科目: 来源: 题型:
【题目】(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
![]()
(2)结论应用:① 如图2,点M,N在反比例函数
(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.
② 若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断 MN与EF是否平行?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,交劣弧CB于D,连接AC.
![]()
(1)请写出两个不同的正确结论;
(2)若CB=8,ED=2,求⊙O的半径.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1和2,在△ABC中,AB=13,BC=14,BH=5.
探究:如图1,AH⊥BC于点H,则AH= ,AC= ,△ABC的面积
;
拓展:如图2,点D在AC上(可与点A,C重合),分别过点A.C作直线BD的垂线,垂足为E,F,设BD=x,AE=m,CF=n(当点D与点A重合时,我们认为
)
(1)用含x,m,n的代数式表示
及
;
(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;
(3)对给定的一个x值,有时只能确定唯一的点D,直接写出这样的x的取值范围.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】王老师把第一小组五名同学的成绩简记为:+10 ,-5 ,0 ,+8 ,-3 ,又知道记为0分的成绩表示90分,正数表示超过90分,则五名同学的平均成绩为多少分?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形ABCD中,AB=9,AD=4. E为CD边上一点,CE=6. 点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.
⑴求AE的长;
⑵当t为何值时,△PAE为直角三角形?
⑶是否存在这样的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com