科目: 来源: 题型:
【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=BD;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,对于任意两点P1(x1 , y1)与P2(x2 , y2)的“友好距离”,给出如下定义: 若|x1﹣x2|≥|y1﹣y2|,则点P1(x1 , y1)与点P2(x2 , y2)的“友好距离”为|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,则P1(x1 , y1)与点P2(x2 , y2)的“友好距离”为|y1﹣y2|;
(1)已知点A(﹣
,0),B为y轴上的动点, ①若点A与B的“友好距离为”3,写出满足条件的B点的坐标: .
②直接写出点A与点B的“友好距离”的最小值 .
(2)已知C点坐标为C(m,
m+3)(m<0),D(0,1),求点C与D的“友好距离”的最小值及相应的C点坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】完成下面的证明.如图,E点位DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证:DF∥AC. 证明:∵∠1=∠2(已知),∠1=∠3,∠2=∠4()
∴∠3=(等量代换)
∴DB∥()
∴∠C=∠ABD()
∴∠C=∠D()
∴∠D=∠ABD()
∴AC∥DF()![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在某场足球比赛中,球员甲从球门底部中心点O的正前方10m处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高为2.44m.
(1)在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)
(2)守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】用公式法解一元二次方程3x2+3=﹣2x时,首先要确定a、b、c的值,下列叙述正确的是( )
A.a=3,b=2,c=3B.a=﹣3,b=2,c=3
C.a=3,b=2,c=﹣3D.a=3,b=﹣2,c=3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com