科目: 来源: 题型:
【题目】综合题
(1)【结论再现】如图①,在
中,
,
,则
,
. ![]()
(2)【问题解决】
如图②,四边形
是一张边长为
的正方形纸片,
、
分别为
、
的中点,沿过点
的折痕将纸片翻折,使点
落在
上的点
处,折痕交
于点
,求
的度数和
的长.![]()
(3)【问题探究】
如图③,点
是等腰
斜边
所在直线上一点,且满足
,求
的大小和此时
的值.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】我们知道一次函数
与
的图象关于
轴对称,所以我们定义:函数
与
互为“镜子”函数.![]()
(1)请直接写出函数
的“镜子”函数
(2)如果一对“镜子”函数
与
的图象交于点
,且与
轴交于
、
两点,如图所示,若
,且
的面积是
,求这对“镜子”函数的解析式.
(3)若点
是
轴上的一个动点,当
为等腰三角形时,直接写出点
的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】“国美”、“苏宁”两家电器商场出售同样的空气净化器和过滤网,空气净化器和过滤网在两家商场的售价一样.已知买一个空气净化器和
个过滤网要花费
元,买
个空气净化器和
个过滤网要花费
元.
(1)请用方程组求出一个空气净化器与一个过滤网的销售价格分别是多少元?
(2)为了迎接新年,两家商场都在搞促销活动,“国美”规定:这两种商品都打九五折;“苏宁”规定:买一个空气净化器赠送两个过滤网.若某单位想要买
个空气净化器和
个过滤网,如果只能在一家商场购买,请问选择哪家商场购买更合算?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+1经过A(-1,0),B(1,1)两点.
(1)求该抛物线的解析式;
(2)阅读理解:
在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1·k2=-1.
解决问题:
①若直线y=3x-1与直线y=mx+2互相垂直,求m的值;
②是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】将抛物线y=x2﹣4x﹣3向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )
A.y=(x+1)2﹣2
B.y=(x﹣5)2﹣2
C.y=(x﹣5)2﹣12
D.y=(x+1)2﹣12
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点O是正方形ABCD对角线BD的中点.
(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.
①∠AEM=∠FEM; ②点F是AB的中点;
(2)如图2,若点E是OD上一点,点F是AB上一点,且使
,请判断△EFC的形状,并说明理由;
(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当
时,请猜想
的值(请直接写出结论).
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是( )
A.2B.12C.18D.24
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,动点
在以
为圆心,
为直径的半圆弧上运动(点
不与点
及
的中点
重合),连接
.过点
作
于点
,以
为边在半圆同侧作正方形
,过
点作
的切线交射线
于点
,连接
、
.
(1)探究:如左图,当
动点在
上运动时;
①判断
是否成立?请说明理由;
②设
,
是否为定值?若是,求出该定值,若不是,请说明理由;
③设
,
是否为定值?若是,求出该定值,若不是,请说明理由;
(2)拓展:如右图,当动点
在
上运动时;
分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,长方形
的顶点
的坐标为
,动点
从原点
出发,以每秒
个单位的速度沿折线
运动,到点
时停止,同时,动点
从点
出发,以每秒
个单位的速度在线段
上运动,当一个点停止时,另一个点也随之停止.在运动过程中,当线段
恰好经过点
时,运动时间
的值是 . ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com