相关习题
 0  350516  350524  350530  350534  350540  350542  350546  350552  350554  350560  350566  350570  350572  350576  350582  350584  350590  350594  350596  350600  350602  350606  350608  350610  350611  350612  350614  350615  350616  350618  350620  350624  350626  350630  350632  350636  350642  350644  350650  350654  350656  350660  350666  350672  350674  350680  350684  350686  350692  350696  350702  350710  366461 

科目: 来源: 题型:

【题目】定义:如图1,等腰△ABC中,点E,F分别在腰AB,AC上,连结EF,若AE=CF,则称EF为该等腰三角形的逆等线.

(1)如图1,EF是等腰△ABC的逆等线,若EF⊥AB,AB=AC=5,AE =2,求逆等线EF的长;

(2)如图2,若等腰直角△DEF的直角顶点D恰好为等腰直角△ABC底边BC上的中点,且点E,F分别在AB,AC上,求证:EF为等腰△ABC的逆等线;

(3)如图3,边长为6的等边三角形△AOC的边OCX轴重合,EF是该等边三角形的逆等线.F点的坐标为(5,);试求点E的坐标(若需要,本题可以直接应用结论:在直角三角形中,30°角所对的直角边等于斜边的一半.)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,在长方形ABCD,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t,t的值为( )秒时,△ABP△DCE全等.

A. 1 B. 13 C. 17 D. 37

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=10cm,BC=6cm,AC=8cm,BD是∠ABC的角平分线。

(1)求△ABC的面积;

(2)求△ABC的角平分线BD的长;

(3)若点E是线段AB上的一个动点,从点B以每秒2cm的速度向A运动,几秒种后△EAD是直角三角形?此小题可直接写出答案

查看答案和解析>>

科目: 来源: 题型:

【题目】已知如图A、D、B、E在同一直线上,AC=EF,AD=BE,∠A=∠E,

(1)求证:△ABC≌△EDF;

(2)当∠CHD=120°,猜想△HDB的形状,并说明理由

查看答案和解析>>

科目: 来源: 题型:

【题目】等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.
(1)若AE=CF; ①求证:AF=BE,并求∠APB的度数;
②若AE=2,试求APAF的值;
(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图:长方形ABCD中,AD=10,AB=4,点Q是BC的中点,点P在AD边上运动,当BPQ是等腰三角形时,AP的长为 .

查看答案和解析>>

科目: 来源: 题型:

【题目】某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间函数关系如图②所示.
(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是元,小张应得的工资总额是元,此时,小李种植水果亩,小李应得的报酬是元;
(2)当10<n≤30时,求z与n之间的函数关系式;
(3)设农庄支付给小张和小李的总费用为w(元),当10<m≤30时,求w与m之间的函数关系式.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.

(1)求该抛物线的函数解析式;
(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.
①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;
②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】一节数学课后,老师布置了一道课后练习题:
如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.

(1)理清思路完成解答
本题证明的思路可用下列框图表示:

根据上述思路,请你完整地书写本题的证明过程.
(2)若PB平分∠ABO,其余条件不变.求证:AP=CD.
(3)知识迁移,探索新知
若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图△ABC中,∠A=96°,延长BCD,∠ABC∠ACD的平分线相交于点A1∠A1BC∠A1CD的平分线相交于点A2依此类推,∠A4BC∠A4CD的平分线相交于点A5,∠A5的度数为(

A. 19.2° B. C. D.

查看答案和解析>>

同步练习册答案