科目: 来源: 题型:
【题目】在七年级下册“证明”的一章的学习中,我们曾做过如下的实验:
画∠AOB=90°,并画∠AOB的平分线OC.
(1)把三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边分别与OA、OB相交于点E、F(如图①).度量PE、PF的长度,这两条线段相等吗?
(2)把三角尺绕点P旋转(如图②),PE与PF相等吗?请说明理由.
(3)探究:画∠AOB=50°,并画∠AOB的平分线OC,在OC上任取一点P,作∠EPF=130°.∠EPF的两边分别与OA、OB相交于E、F两点(如图③),PE与PF相等吗?请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,某日的钱塘江观潮信息如表:![]()
![]()
按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离
(千米)与时间
(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点
,点
坐标为
,曲线
可用二次函数
(
,
是常数)刻画.
(1)求
的值,并求出潮头从甲地到乙地的速度;
(2)11:59时,小红骑单车从乙地出发,沿江边公路以
千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?
(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为
千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度
,
是加速前的速度).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,
是
的中线,
是线段
上一点(不与点
重合).
交
于点
,
,连结
.![]()
(1)如图1,当点
与
重合时,求证:四边形
是平行四边形;
(2)如图2,当点
不与
重合时,(1)中的结论还成立吗?请说明理由.
(3)如图3,延长
交
于点
,若
,且
.当
,
时,求
的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知如图,射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF。
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由。
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是小强洗漱时的侧面示意图,洗漱台(矩形
)靠墙摆放,高
,宽
,小强身高
,下半身
,洗漱时下半身与地面成
(
),身体前倾成
(
),脚与洗漱台距离
(点
,
,
,
在同一直线上).![]()
(1)此时小强头部
点与地面
相距多少?
(2)小强希望他的头部
恰好在洗漱盆
的中点
的正上方,他应向前或后退多少?
(
,
,
,结果精确到
)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )
![]()
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目: 来源: 题型:
【题目】小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.
根据统计表,回答问题:![]()
(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?
(2)请简单描述月用电量与气温之间的关系;
(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com