相关习题
 0  351701  351709  351715  351719  351725  351727  351731  351737  351739  351745  351751  351755  351757  351761  351767  351769  351775  351779  351781  351785  351787  351791  351793  351795  351796  351797  351799  351800  351801  351803  351805  351809  351811  351815  351817  351821  351827  351829  351835  351839  351841  351845  351851  351857  351859  351865  351869  351871  351877  351881  351887  351895  366461 

科目: 来源: 题型:

【题目】小文同学统计了他所在小区居民每天微信阅读的时间,并绘制了直方图.有以下说法:①小文同学一共统计了60人;②每天微信阅读不足20分钟的人数有8人;③每天微信阅读3040分钟的人数最多;④每天微信阅读010分钟的人数最少.根据图中信息,上述说法中正确的是(  )

A. ①②③④ B. ①②③ C. ②③④ D. ③④

查看答案和解析>>

科目: 来源: 题型:

【题目】不等式组 的解集在数轴上表示正确的是( )
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校举行学生爱校·爱家·爱国主题演讲比赛,某同学将选手们的得分进行统计,绘制成如图所示的得分条形图下列四个判断:

①共有10人得6分;

②得5分和7分的人数一样多;

8名选手的成绩高于8分;

④共有25名选手参赛.

其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】已知△ABC三条边的长度分别是,记△ABC的周长为CABC

1)当x2时,△ABC的最长边的长度是   (请直接写出答案);

2)请求出CABC(用含x的代数式表示,结果要求化简);

3)我国南宋时期数学家秦九韶曾提出利用三角形的三边长求面积的秦九韶公式:S.其中三角形边长分别为abc,三角形的面积为S

x为整数,当CABC取得最大值时,请用秦九韶公式求出△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,点AB的坐标分别为A0a),Bba),且ab满足(a32+|b6|0,现同时将点AB分别向下平移3个单位,再向左平移2个单位,分别得到点AB的对应点CD,连接ACBDAB

1)求点CD的坐标及四边形ABDC的面积S四边形ABCD

2)在y轴上是否存在一点M,连接MCMD,使SMCDS四边形ABCD?若存在这样一点,求出点M的坐标,若不存在,试说明理由;

3)点P是直线BD上的一个动点,连接PAPO,当点PBD上移动时(不与BD重合),直接写出∠BAP,∠DOP,∠APO之间满足的数量关系.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校九年级两个班,各选派10名学生参加学校举行的“数学奥林匹克”大赛预赛,各参赛选手的成绩如下:
九(1)班:88,91,92,93,93,93,94,98,98,100
九(2)班:89,93,93,93,95,96,96,98,98,99
通过整理,得到数据分析表如下:

班级

最高分

平均分

中位数

众数

方差

九(1)班

100

94

b

93

12

九(2)班

99

a

95.5

93

8.4


(1)直接写出表中a、b的值:a= , b=
(2)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,求另外两个决赛名额落在不同班级的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一次知识竞赛中,甲、乙两人进入了必答题环节.规则是:两人轮流答题,每人都要回答20个题,每个题回答正确得a分,回答错误或放弃回答扣b分.当甲、乙两人恰好都答完12个题时,甲答对了8个题,得分为64分;乙答对了9个题,得分为78分.

1)求ab的值;

2)规定此环节得分不低于120分能晋级,甲在剩下的比赛中至少还要答对多少个题才能顺利晋级?

查看答案和解析>>

科目: 来源: 题型:

【题目】为传播奥运知识,小刚就本班学生对奥运知识的了解程度进行了一次调查统计:A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:

1)求该班共有多少名学生;

2)在条形图中,将表示一般了解的部分补充完整;

3)在扇形统计图中,计算出了解较多部分所对应的圆心角的度数;

4)如果全年级共1000名同学,请你估算全年级对奥运知识了解较多的学生人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,D是边AB上一点,E是边AC的中点,作CFABDE的延长线于点F

1)证明:△ADE≌△CFE

2)若∠B=∠ACBCE5CF7,求DB

查看答案和解析>>

科目: 来源: 题型:

【题目】某种商品A的零售价为每件900元,为了适应市场竞争,商店按零售价的九折优惠后,再让利40元销售,仍可获利10%, ①这种商品A的进价为多少元?
②现有另一种商品B进价为600元,每件商品B也可获利10%.对商品A和B共进货100件,要使这100件商品共获纯利6670元,则需对商品A、B分别进货多少件?

查看答案和解析>>

同步练习册答案