相关习题
 0  354306  354314  354320  354324  354330  354332  354336  354342  354344  354350  354356  354360  354362  354366  354372  354374  354380  354384  354386  354390  354392  354396  354398  354400  354401  354402  354404  354405  354406  354408  354410  354414  354416  354420  354422  354426  354432  354434  354440  354444  354446  354450  354456  354462  354464  354470  354474  354476  354482  354486  354492  354500  366461 

科目: 来源: 题型:

【题目】如图,一次函数y=ax+b的图象与x轴,y轴交于A,B两点,与反比例函数y= 的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列五个结论:

①△CEFDEF的面积相等; ②△AOB∽△FOE;

③△DCE≌△CDF;AC=BD; tanBAO=a

其中正确的结论是_____.(把你认为正确结论的序号都填上)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点A60),B85),将线段OA平移至CB,点Dx0)在x轴正半轴上(不与点A重合),连接OCABCDBD

1)求对角线AC的长;

2ODCABD的面积分别记为S1S2,设SS1S2,求S关于x的函数解析式,并探究是否存在点D使SDBC的面积相等,如果存在,请求出x的值(或取值范围);如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】(10分)如图,已知RtABC中,∠C=90°,DBC的中点,以AC为直径的⊙OAB于点E.

(1)求证:DE是⊙O的切线;

(2)若AE:EB=1:2,BC=6,求⊙O的半径.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.

(1)求∠AOE的度数;

(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列命题中,真命题有(  )①同旁内角互补;②长度为235的三条线段可以构成三角形;③平方根、立方根是它本身的数是01;④和﹣|2|互为相反数;⑤45;⑥在同一平面内,如果abac.那么bc

A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:

【题目】将一副三角板按如图放置,则下列结论中,正确的有( )①∠1=3;②如果∠2=30°则有ACDE;③如果∠2=30°,则有BCAD;④如果∠2=30°,必有∠4=C

A.①②③B.①②④C.③④D.①②③④

查看答案和解析>>

科目: 来源: 题型:

【题目】8分)已知A4m+10)、Bn4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.

(1)求一次函数和反比例函数的解析式;

(2)求△AOB的面积;

3)观察图象,直接写出不等式kx+b0的解集.

查看答案和解析>>

科目: 来源: 题型:

【题目】数学课上, 老师要求同学们利用三角板画两条平行线.老师说苗苗和小华两位同学画法都是正确的,两位同学的画法如下:

苗苗的画法:

①将含30°角的三角尺的最长边与直线a重合,另一块三角尺最长边与含30°角的三角尺的最短边紧贴;

②将含30°角的三角尺沿贴合边平移一段距离,画出最长边所在直线b,则b//a.

小华的画法:

①将含30°角三角尺的最长边与直线a重合,用虚线做出一条最短边所在直线;

②再次将含30°角三角尺的最短边与虚线重合,画出最长边所在直线b,则b//a.

请在苗苗和小华两位同学画平行线的方法中选出你喜欢的一种,并写出这种画图的依据.

答:我喜欢__________同学的画法,画图的依据是__________.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知矩形的边长.某一时刻,动点点出发沿方向以的速度向点匀速运动;同时,动点点出发沿方向以的速度向点匀速运动,问:

(1)经过多少时间,的面积等于矩形面积的

(2)是否存在时刻t,使以A,M,N为顶点的三角形与相似?若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.

(1)求证:四边形ADEF为平行四边形;

(2)当点D为AB中点时,判断ADEF的形状;

(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.

查看答案和解析>>

同步练习册答案