相关习题
 0  354391  354399  354405  354409  354415  354417  354421  354427  354429  354435  354441  354445  354447  354451  354457  354459  354465  354469  354471  354475  354477  354481  354483  354485  354486  354487  354489  354490  354491  354493  354495  354499  354501  354505  354507  354511  354517  354519  354525  354529  354531  354535  354541  354547  354549  354555  354559  354561  354567  354571  354577  354585  366461 

科目: 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.

(1)求抛物线的解析式;

(2)求抛物线的顶点坐标

(3)已知点D(m,m+1)在第一象限的抛物线上,求点D的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】有一个四棱柱,

1)若它的底面边长都是5cm,所有侧面的面积和是40cm,那么它的侧棱长是多少?

2)若它的所有棱都相等,且所有棱长之和为60cm,那么它的形状是什么?它的体积是多少?

3)若它的底面是等腰梯形,上下底边长分别为2cm8cm,腰长为5cm,高是4cm,它的侧棱长是底面周长的一半,求该四棱柱的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点DEABC的边BC上,连接ADAE. AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:(1)①②③;(2)①③②;(3)②③.

1)以上三个命题是真命题的为(直接答题号)

2)请选择一个真命题进行证明(先写出所选命题,然后证明).

查看答案和解析>>

科目: 来源: 题型:

【题目】某校七年级全体学生在5名教师的带领下去公园秋游,公园的门票为每人30.现有两种优惠方案,甲方案:带队老师免费,学生按8折收费;乙方案:师生都按7.5折收费.

(1)若有n名学生,用含n的代数式表示两种优惠方案各需多少元?

(2)当n=70时,采用哪种方案更优惠?

(3)当n=100时,采用哪种方案更优惠?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,点A04),B30),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为   

查看答案和解析>>

科目: 来源: 题型:

【题目】中学生骑电动车上学给交通安全带来隐患,为了解某中学2 500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是( )

A. 调查方式是普查 B. 该校只有360个家长持反对态度

C. 样本是360个家长 D. 该校约有90%的家长持反对态度

查看答案和解析>>

科目: 来源: 题型:

【题目】某次数学单元测试,七年级第一小组共10名同学,小组长把超过班级平均分的部分记为,不足的部分记为,记录如表:

与平均分的差值(分)

15

9

0

3

12

17

人数

1

2

1

2

3

1

根据表格数据解答下列问题:

1)第一小组同学的平均分比班级平均分高还是低?高或低多少分?

2)若该班这次测试的平均分为80分,求第一小组10名同学的总分.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图, 已知抛物线经过A(-2,0)、B(4,0)、C(0,4)三点.

(1)求此抛物线的解析式;

(2)此抛物线有最大值还是最小值?请求出其最大或最小值;

(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知关于x的一元二次方程有两个不相等的实数根

(1)求k的取值范围;

(2)若k取小于1的整数,且此方程的解为整数,则求出此方程的两个整数根;

(3)在(2)的条件下,二次函数x轴交于AB两点(A点在B点的左侧),D点在此抛物线的对称轴上,若∠DAB=60,直接写出D点的坐标

查看答案和解析>>

科目: 来源: 题型:

【题目】数学课上,老师给出了如下问题:

1)以下是小刚的解答过程,请你将解答过程补充完整:

解:如图2,因为平分

所以____________(角平分线的定义).

因为

所以______.

2)小戴说:我觉得这道题有两种情况,小刚考虑的是内部的情况,事实上,还可能在的内部”.根据小戴的想法,请你在图1中画出另一种情况对应的图形,并直接写出的度数:______.

查看答案和解析>>

同步练习册答案