科目: 来源: 题型:
【题目】(2017山东德州第21题)如图所示,某公路检测中心在一事故多发地带安装了一个测速仪,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用的时间为0.9秒.已知∠B=30°,∠C=45°
![]()
(1)求B,C之间的距离;(保留根号)
(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:
,
)
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)当a=2,b=
时,分别求代数式a2﹣2ab+b2和(a﹣b)2的值;
(2)当a=﹣5,b=﹣3时,a2﹣2ab+b2 (a﹣b)2(填“=“,“<”“>”)
(3)观察(1)(2)中代探索代数式a2﹣2ab+b2和(a﹣b)2有何数量关系,并把探索的结果写出来:a2﹣2ab+b2 (a﹣b)2(填“=”,“<”“>”)
(4)利用你发现的规律,求135.72﹣2×135.7×35.7+35.72的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】计算下列各题(直接写出答案)
(1)2+(﹣2)= ;
(2)1﹣3= ;
(3)(﹣1)×(﹣3)= ;
(4)12÷(﹣3)= ;
(5)﹣32×
= ;
(6)(﹣4)2018×(﹣0.25)2019= ;
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,将等腰△ABC绕顶点B逆时针方向旋转40°得到△A1BC1,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.
![]()
求证:ΔBCF≌ΔBA1D.
当∠C=40°时,请你证明四边形A1BCE是菱形.
查看答案和解析>>
科目: 来源: 题型:
【题目】课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.
(1)求证:△ADC≌△CEB;
(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于
BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为( )
![]()
A. 90°B. 95°C. 100°D. 105°
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,世博园段的浦江两岸互相平行,C、D是浦西江边间隔200m的两个场馆.海宝在浦东江边的宝钢大舞台A处,测得∠DAB=30°, 然后沿江边走了500m到达世博文化中心B处,测得∠CBF=60°, 求世博园段黄浦江的宽度(结果可保留根号).
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某商店分两次购进
、
两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:
![]()
(1)求
、
两种商品每件的进价分别是多少元?
(2)商场决定
商品以每件
元出售,
商品以每件
元出售.为满足市场需求,需购进
、
两种商品共
件,且
商品的数量不少于
种商品数量的
倍,请你求出获利最大的进货方案,并确定最大利润.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.
(1)求证:△ACF∽△DAE;
(2)若S△AOC=
,求DE的长;
(3)连接EF,求证:EF是⊙O的切线.
![]()
【答案】(1) 见解析; (2)3
;(3)见解析.
【解析】试题分析:(1)根据圆周角定理得到∠BAC=90°,根据三角形的内角和得到∠ACB=60°根据切线的性质得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到结论;
(2)根据S△AOC=
,得到S△ACF=
,通过△ACF∽△DAE,求得S△DAE=
,过A作AH⊥DE于H,解直角三角形得到AH=
DH=
DE,由三角形的面积公式列方程即可得到结论;
(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到∠OFG=
(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,过O作OG⊥EF于G,根据全等三角形的性质得到OG=OA,即可得到结论.
试题解析:(1)证明:∵BC是⊙O的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切线,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切线,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=
,∴S△ACF=
,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=
BD,∴AF=
BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴
,∵△ACF∽△DAE,∴
=
,∴S△DAE=
,过A作AH⊥DE于H,∴AH=
DH=
DE,∴S△ADE=
DEAH=
×![]()
=
,∴DE=
;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF与△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=
(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF与△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切线.
![]()
【题型】解答题
【结束】
25
【题目】如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2
,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.
(1)填空:点B的坐标为 ;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证:
;
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点C在反比例函数y=
的图象上,过点C作CD⊥y轴,交y轴负半轴于点D,且△ODC的面积是3.
(1)求反比例函数y=
的解析式;
(2)若CD=1,求直线OC的解析式.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com