相关习题
 0  354643  354651  354657  354661  354667  354669  354673  354679  354681  354687  354693  354697  354699  354703  354709  354711  354717  354721  354723  354727  354729  354733  354735  354737  354738  354739  354741  354742  354743  354745  354747  354751  354753  354757  354759  354763  354769  354771  354777  354781  354783  354787  354793  354799  354801  354807  354811  354813  354819  354823  354829  354837  366461 

科目: 来源: 题型:

【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:

售价x(元/千克)

50

60

70

销售量y(千克)

100

80

60

(1)求y与x之间的函数表达式;

(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本),并指出售价为多少元时获得最大利润,最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时。

1)如果甲、乙、丙三人同时改卷,那么需要多少时间完成?

2)如果按照甲、乙、丙、甲、乙、丙、……的次序轮流阅卷,每一轮中每人各阅卷1小时。那么要多少小时完成?

3)能否把(2)题所说的甲、乙、丙的次序作适当调整,其余的不变,使得完成这项任务的时间至少提前半小时?(答题要求:如认为不能,需要说明理由;如认为能,请至少说出一种轮流的次序,并求出相应能提前多少时间完成阅卷任务)

查看答案和解析>>

科目: 来源: 题型:

【题目】湖南省作为全国第三批启动高考综合改革的省市之一,从2018年秋季入学的高中一年级学生开始实施高考综合改革.深化高考综合改革,承载着广大考生的美好期盼,事关千家万户的切身利益,社会关注度高.为了了解我市某小区居民对此政策的关注程度,某数学兴趣小组随机采访了该小区部分居民,根据采访情况制作了如下统计图表:

1)根据上述统计图表,可得此次采访的人数为___________m=___________n=___________.

2)根据以上信息补全图中的条形统计图.

3)请估计在该小区1500名居民中,高度关注新高考政策的有多少名.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,为建设美丽农村,村委会打算在正方形地块甲和长方形地块乙上进行绿化.在两地块内分别建造一个边长为a的大正方形花坛和四个边长为b的小正方形花坛(阴影部分),空白区域铺设草坪,记S1表示地块甲中空白处铺设草坪的面积,S2表示地块乙中空白处铺设草坪的面积.

1S1=________S2=________(用含ab的代数式表示并化简) .

2)若a=2b,求的

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,给出了甲、乙两个品牌的纯净水近年来的销售量变化情况,哪种品牌的纯净水销售量增长较快?这与图象给你的感觉一样吗?为什么图象会给人这样的感觉?

查看答案和解析>>

科目: 来源: 题型:

【题目】为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:

(1)在表中:m= ,n=

(2)补全频数分布直方图;

(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在 组;

(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C两组学生的概率是多少?并列表或画树状图说明.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,中,的中点

1)求证:四边形是平行四边形。

2)求证:四边形是菱形。

3)如果时,求四边形ADBE的面积

4)当 度时,四边形是正方形(不证明)

查看答案和解析>>

科目: 来源: 题型:

【题目】1)已知代数式(kx2+6x+8-6x+5x2+2)化简后的结果是常数,求系数k的值.

2)先化简,再求值:2-3xy-y2-2x2-7xy-2y2),其中x=3y=-.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图:在数轴上A点表示数aB点示数bC点表示数cb是最小的正整数,且ab满足 +(c-7)2=0.

(1) a= b= c=

(2) 若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合.

(3) ABC开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= AC= BC= .(用含t的代数式表示)

(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1,点B(﹣9,10,AC∥x轴,点P时直线AC下方抛物线上的动点.

(1求抛物线的解析式;(2过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案