相关习题
 0  354737  354745  354751  354755  354761  354763  354767  354773  354775  354781  354787  354791  354793  354797  354803  354805  354811  354815  354817  354821  354823  354827  354829  354831  354832  354833  354835  354836  354837  354839  354841  354845  354847  354851  354853  354857  354863  354865  354871  354875  354877  354881  354887  354893  354895  354901  354905  354907  354913  354917  354923  354931  366461 

科目: 来源: 题型:

【题目】在△ABC中,∠ACB=90°,经过点B的直线l(不与直线AB重合)与直线BC的夹角等于∠ABC,分别过点C、点A作直线l的垂线,垂足分别为点D、点E.

(1)如图1,当点E与点B重合时,若AE=4,判断以C点为圆心CD长为半径的圆C与直线AB的位置关系并说明理由;

(2)如图2,当点E在DB延长线上时,求证:AE=2CD;

(3)记直线CE与直线AB相交于点F,若,,CD=4,求BD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】直线与x轴,y轴分别交于A,B两点,点A关于直线的对称点为点C.

(1)求点C的坐标;

(2)若抛物线经过A,B,C三点,求该抛物线的表达式;

(3)若抛物线 经过A,B两点,且顶点在第二象限,抛物线与线段AC有两个公共点,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知是最大的负整数,的倒数,1,且分别是点在数轴上对应的数.若动点从点出发沿数轴正方向运动,动点同时从点出发沿数轴负方向运动,点的速度是每秒3个单位长度,点的速度是每秒1个单位长度.

1)在数轴上标出点的位置;

2)运动前两点之间的距离为      ;运动t秒后,点,点运动的路程分别为            

3)求运动几秒后,点与点相遇?

4)在数轴上找一点,使点三点的距离之和等于11,直接写出所有点对应的数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣B﹣﹣C﹣﹣E的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形)

解答下列问题:

(1)当x=2s时,y= cm2;当x=s时,y= cm2

(2)当5≤x≤14 时,求y与x之间的函数关系式.

(3)当动点P在线段BC上运动时,求出时x的值.

(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,在△ABC中,ABAC4cm,将△ABC沿CA方向平移4cm得到△EFA,连接BEBFBEAF交于点G

(1)判断BEAF的位置关系,并说明理由;

(2)若∠BEC15°,求四边形BCEF的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB所在的直线与CD平行),层高AD为8米,ACD=20°,为使得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离.

(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A、B之间的距离至少要多少米?(精确到0.1米)

(2)如果自动扶梯改为由AE、EF、FC三段组成(如图中虚线所示),中间段EF为平台(即EFDC),AE段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)

(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)

查看答案和解析>>

科目: 来源: 题型:

【题目】图①②③是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.

(1)图①中△MON的面积=________;

(2)在图②③中以格点为顶点画出一个正方形ABCD,使正方形ABCD的面积等于(1)中△MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD的面积没有剩余(在图②、图③中画出的图形不能是全等形)

查看答案和解析>>

科目: 来源: 题型:

【题目】出租车司机王师傅某天上午的营运全是在经十路上进行的,如果规定向东为正,向西为负,他这天上午所接十位乘客的行车里程(单位:千米)如下:

5、-2、+5、-1、+10、-3、-2、+12、+4、-5

1)王师傅这天上午的出发地记为0,他将最后一名乘客送抵目的地时,距上午的出发地有多远?

2)若出租车消耗天然气量为0.1立方米/千米,这天上午王师傅共耗天然气多少立方米?

3)若出租车起步价为9元,起步里程为3千米(包括3千米),超过部分(不足1千米按1千米计算)每千米1.5元,这天上午王师傅共得车费多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABCD中,EBD上一点,AE的延长线交CDF,交BC的延长线于GMFG的中点.

1)求证:① 1=2 ECMC.

2)试问当∠1等于多少度时,ECG为等腰三角形?请说明理由.

【答案】1①证明见解析;②证明见解析;(2)当∠1=30°时,ECG为等腰三角形. 理由见解析.

【解析】试题分析:1①根据正方形的对角线平分一组对角可得然后利用边角边定理证明再根据全等三角形对应角相等即可证明;
②根据两直线平行,内错角相等可得 再根据直角三角形斜边上的中线等于斜边的一半可得然后据等边对等角的性质得到,所以 然后根据即可证明 从而得证;
2)根据(1)的结论,结合等腰三角形两底角相等 然后利用三角形的内角和定理列式进行计算即可求解.

试题解析:(1)证明:①∵四边形ABCD是正方形,

∴∠ADE=CDEAD=CD

在△ADE与△CDE,

∴△ADE≌△CDE(SAS)

∴∠1=2

②∵ADBG(正方形的对边平行)

∴∠1=G

MFG的中点,

MC=MG=MF

∴∠G=MCG

又∵∠1=2

∴∠2=MCG

ECMC

2)当∠1=30°时, 为等腰三角形. 理由如下:

要使为等腰三角形,必有

∴∠1=30°.

型】解答
束】
24

【题目】如图,已知抛物线经过原点O和点A,点B(2,3)是该抛物线对称轴上一点,过点BBCx轴交抛物线于点C,连结BOCA,若四边形OACB是平行四边形.

1 直接写出AC两点的坐标;② 求这条抛物线的函数关系式;

2)设该抛物线的顶点为M,试在线段AC上找出这样的点P,使得PBM是以BM为底边的等腰三角形并求出此时点P的坐标;

3)经过点M的直线把□ OACB的面积分为1:3两部分,求这条直线的函数关系式.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB3AD4,∠ABC60°,过BC的中点EEFAB于点F,交DC的延长线于点G,则DE_____

查看答案和解析>>

同步练习册答案