相关习题
 0  354768  354776  354782  354786  354792  354794  354798  354804  354806  354812  354818  354822  354824  354828  354834  354836  354842  354846  354848  354852  354854  354858  354860  354862  354863  354864  354866  354867  354868  354870  354872  354876  354878  354882  354884  354888  354894  354896  354902  354906  354908  354912  354918  354924  354926  354932  354936  354938  354944  354948  354954  354962  366461 

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,直线x轴交于点A,与y轴交于点C.抛物线经过AC两点,且与x轴交于另一点BB在点A右侧

1求抛物线的解析式及点B坐标;

2若点M是线段BC上的一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;

3试探究当ME取最大值时,在抛物线上、x轴下方是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】数学复习课上,张老师出示了下框中的问题:

已知:在Rt△ACB中,∠C=90°,点D是斜边AB上的中点,连接CD.

求证:CD=AB.

问题思考

(1)经过独立思考,同学们想出了多种正确的证明思想,其中有位同学的思路如下:如图1,过点B作BE∥AC交CD的延长线于点E。请你根据这位同学的思路提示证明上述框中的问题.

方法迁移

(2)如图2,在Rt△ACB中,∠ACB=90°,点D为AB的中点,点E是线段AC上一动点,连接DE,线段DF始终与DE垂直且交BC于点F。试猜想线段AE,EF,BF之间的数量关系,并加以证明.

拓展延伸

(3)如图3,在Rt△ACB中,∠ACB=90°,点D为AB的中点,点E是线段AC延长线上一动点,连接DE,线段DF始终与DE垂直且交CB延长线于点F。试问第(2)小题中线段AE,EF,BF之间的数量关系会发生改变吗?若会,请写出关系式;若不会,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,OB为∠AOC的平分线,OD是∠COE的平分线.

(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD为多少度?

(2)如果∠AOE=140°,∠COD=30°,那么∠AOB为多少度?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点EEGCDAF于点G,连接DG

1)求证:四边形EFDG是菱形;

2)若AG=7GF=3,求DF的长

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在五边形A1A2A3A4A5中,B1A1对边A3A4的中点,连接A1B1,我们称A1B1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知,将一个直角三角形纸片()的一个顶点放在点处,现将三角形纸片绕点任意转动,平分斜边的夹角,平分.

1)将三角形纸片绕点转动(三角形纸片始终保持在的内部),若,则_______

2)将三角形纸片绕点转动(三角形纸片始终保持在的内部),若射线恰好平方,若,求的度数;

3)将三角形纸片绕点重合位置逆时针转到重合的位置,猜想在转动过程中的数量关系?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同.

1)搅匀后,从中任意摸出一个球,恰好是红球的概率是   

2)搅匀后,从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出一个球.

①求两次都摸到红球的概率;

②经过了n摸球﹣记录﹣放回的过程,全部摸到红球的概率是   

查看答案和解析>>

科目: 来源: 题型:

【题目】抢红包2015年春节十分火爆的一项网络活动,某企业有4000名职工,从中随机抽取350人,按年龄分布和抢红包所持态度情况进行调查,并将调查结果绘成了条形统计图和扇形统计图.

1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?

2)如果把对抢红包所持态度中的经常(抢红包)偶尔(抢红包)统称为参与抢红包,那么这次接受调查的职工中参与抢红包的人数是多少?并估计该企业从不(抢红包)的人数是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】20208月连淮扬镇铁路正式通车,高邮迈入高铁时代,动车的平均速度为(动车的长度不计),高铁的平均速度为(高铁的长度不计),扬州市内依次设有6个站点,宝应站、高邮北站、高邮高铁站、邵伯站、江都站、扬州高铁站,假设每两个相邻站点之间的路程都相等,已知一列动车、一列高铁同时经过宝应站开往扬州高铁站,若中途不停靠任何站点,到达扬州高铁站时高铁比动车将早到10分钟

1)求宝应站到扬州高铁站的路程;

2)若一列动车6:00从宝应站出发,每个站点都停靠4分钟,一列高铁6:18从宝应站出发,只停靠高邮北站、江都站,每个站点都停靠4分钟.

①求高铁经过多长时间追上动车;

②求高铁经过多长时间后,与动车的距离相距20千米.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读下列材料:

关于x的方程:的解是的解是的解是的解是

请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.

由上述的观察、比较、猜想、验证,可以得出结论:

如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:

查看答案和解析>>

同步练习册答案