科目: 来源: 题型:
【题目】早上,甲、乙、丙三人在同一条路上不同起点朝同方向以不同的速度匀速跑:
点
分时,乙在中间,丙在前,甲在后,且乙与甲、丙的距离相等:
点时,甲追上乙;
点
分时,甲追上丙;当乙追上丙时,若从
点
分起计时,丙跑的时间为___________分钟.
查看答案和解析>>
科目: 来源: 题型:
【题目】如果A、B、C三点在同一直线上,且线段AB=6 cm,BC=4 cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )
A. 5 cm B. 1 cm C. 5或1 cm D. 无法确定
查看答案和解析>>
科目: 来源: 题型:
【题目】中央电视台体育频道用直升机航拍技术全程直播国际马拉松比赛.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为30°,B处的俯角为45°.如果此时直升机镜头C处的高度CD为100米,点A、D、B在同一直线上,则A、B两点的距离是_____米.(保留根号)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,M为等腰△ABD的底AB的中点,过D作DC∥AB,连结BC;AB=8cm,DM=4cm,DC=1cm,动点P自A点出发,在AB上匀速运动,动点Q自点B出发,在折线BC﹣CD上匀速运动,速度均为1cm/s,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(s)时,△MPQ的面积为S(不能构成△MPQ的动点除外).
(1)t(s)为何值时,点Q在BC上运动,t(s)为何值时,点Q在CD上运动;
(2)求S与t之间的函数关系式;
(3)当t为何值时,S有最大值,最大值是多少?
(4)当点Q在CD上运动时,直接写出t为何值时,△MPQ是等腰三角形.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线AB、CD相交于点O,过点O作两条射线OM、ON,且∠AOM=∠CON=90°
![]()
(1)若OC平分∠AOM,求∠AOD的度数.
(2)若∠1=
∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学有一块四边形的空地ABCD,如图所示,经测量∠A=90°,AB=6m,BC=24m,CD=26m,DA=8m.
![]()
(1)求四边形ABCD的面积;
(2)学校计划在空地上种植草皮,若每平方米草皮需要200元,问学校需要投入多少资金买草皮
查看答案和解析>>
科目: 来源: 题型:
【题目】点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.
利用数轴,根据数形结合思想,回答下列问题:
![]()
(1)已知|x|=3,则x的值是 .
(2)数轴上表示2和6两点之间的距离是 ,数轴上表示1和﹣2的两点之间的距离为 ;
(3)数轴上表示x和1两点之间的距离为 ,数轴上表示x和﹣3两点之间的距离为
(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|= ;
(5)|x+3|+|x﹣4|的最小值为 ,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为 .
(6)|x+1|﹣|x﹣3|的最大值为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】矩形ABCD中,点E、F分别在边CD、AB上,且DE=BF,∠ECA=∠FCA.
(1)求证:四边形AFCE是菱形;
(2)若AB=8,BC=4,求菱形AFCE的面积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.
(1)求该商家第一次购进机器人多少个?
(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com