相关习题
 0  354848  354856  354862  354866  354872  354874  354878  354884  354886  354892  354898  354902  354904  354908  354914  354916  354922  354926  354928  354932  354934  354938  354940  354942  354943  354944  354946  354947  354948  354950  354952  354956  354958  354962  354964  354968  354974  354976  354982  354986  354988  354992  354998  355004  355006  355012  355016  355018  355024  355028  355034  355042  366461 

科目: 来源: 题型:

【题目】为迎接423日的世界读书日,某书店制定了活动计划,如表是活动计划的部分信息:

(1)杨经理查看计划时发现:A类图书的标价是B类图书标价的1.5.若顾客用540元购买图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10.请求出AB两类图书的标价.

(2)经市场调查后,杨经理发现他们高估了读书日对图书销售的影响,便调整了销售方案:A类图书每本按标价降低a()销售,B类图书价格不变.那么书店应如何进货才能获得最大利润.

查看答案和解析>>

科目: 来源: 题型:

【题目】世界卫生组织预计:到2025年,全世界将会有一半人面临用水危机,为了倡导节约用水,从我做起,某县政府决定对县直属机关300户家庭一年的月平均用水量进行调查,调查小组抽查了部分家庭月平均用水量(单位:吨),绘制条形图和扇形图如图所示.

(1)请将条形统计图补充完整;

(2)这些家庭月平均用水量数据的平均数是_______,众数是______,中位数是_______

(3)根据样本数据,估计该县直属机关300户家庭的月平均用水量不超过12吨的约有多少户.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,是住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=30m,现需了解甲楼对乙楼的采光的影响情况.

(1)当太阳光与水平线的夹角为30°角时,求甲楼的影子在乙楼上有多高(精确到0.1m,=1.73);

(2)若要甲楼的影子刚好不落在乙楼的墙上,此时太阳与水平线的夹角为多少度?

查看答案和解析>>

科目: 来源: 题型:

【题目】一副直角三角板如图放置,点C在FD的延长线上,ABCF,F=ACB=90°,E=45°,A=60°,AC=10,试求CD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一根木棒(AB)长为2a,斜靠在与地面(OM)垂直的墙壁(ON)上,与地面的倾斜角(∠ABO)为60°,当木棒A端沿N0向下滑动到A′,AA′=()a,B端沿直线OM向右滑动到B′,则木棒中点从P随之运动到P′所经过的路径长为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将连续的奇数1357……排成如下的数表,用十字形框框出5个数.

探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为   ,这说明被十字框框中的五个奇数的和一定是正整数nn1)的倍数,这个正整数n   

探究规律二:落在十字框中间且位于第二列的一组奇数是21395775,则这一组数可以用整式表示为18m+3m为序数),同样,落在十字框中间且位于第三列的一组奇数可以表示为   ;(用含m的式子表示)

运用规律:

1)已知被十字框框中的五个奇数的和为2025,则十字框中间的奇数是   ,这个奇数落在从左往右第   列;

2)被十字框框中的五个奇数的和可能是2020吗?若能,请求出这五个数:若不能,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△A1B1A2,△A2B2A3,△A3B3A4...,△AnBnAn+1都是等腰直角三角形,其中点A1A2An,在x轴上,点B1B2…Bn在直线y=x上,已知OA1=1,则OA2019的长是_____.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知A=x-2y,B=-x-4y+1.

(1)求2(A+B)-(A-B);(结果用含x,y的代数式表示

(2)当互为相反数时,求(1)中代数式的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

问题探究:不妨假设能搭成种不同的等腰三角形,为探究之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.

探究一:

1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

此时,显然能搭成一种等腰三角形。所以,当时,

2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形

所以,当时,

3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形

所以,当时,

4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形

所以,当时,

综上所述,可得表


3

4]

5

6


1

0

1

1

探究二:

1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?

(仿照上述探究方法,写出解答过程,并把结果填在表中)

2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三

角形?(只需把结果填在表中)


7

8

9

10






你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……

解决问题:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

(设分别等于,其中是整数,把结果填在表中)











问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)

查看答案和解析>>

科目: 来源: 题型:

【题目】有个填写运算符号的游戏:在“”中的每个□内,填入中的某一个(可重复使用),然后计算结果.

1)计算:

2)若请推算□内的符号;

3)在“”的□内填入符号后,使计算所得数最小,直接写出这个最小数.

查看答案和解析>>

同步练习册答案