相关习题
 0  355054  355062  355068  355072  355078  355080  355084  355090  355092  355098  355104  355108  355110  355114  355120  355122  355128  355132  355134  355138  355140  355144  355146  355148  355149  355150  355152  355153  355154  355156  355158  355162  355164  355168  355170  355174  355180  355182  355188  355192  355194  355198  355204  355210  355212  355218  355222  355224  355230  355234  355240  355248  366461 

科目: 来源: 题型:

【题目】某自行车厂一周计划生产辆自行车,平均每天生产辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负);

星期

增减

根据记录可知前三天共生产________辆;

产量最多的一天比产量最少的一天多生产________辆;

该厂实行计件工资制,每辆车元,超额完成任务每辆奖元,少生产一辆扣元,那么该厂工人这一周的工资总额是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】观察图形,解答问题:

1)按下表已填写的形式填写表中的空格:





三个角上三个数的积

(-1×2=-2

(-3×(-4×(-5)=-60


三个角上三个数的和

1+(-1)+22

(-3)+(-4)+(-5)=-12


积与和的商

(-2÷2=-1



2)请用你发现的规律求出图中的数x和图中的数y

查看答案和解析>>

科目: 来源: 题型:

【题目】已知反比例函数(k为常数,k≠0)的图象经过点A(2,3).

(1)求这个函数的解析式;

(2)判断点B(1,6),C(3,2)是否在这个函数的图象上,并说明理由;

(3)3<x<1时,求y的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:

(1)在第n个图中,第一横行共    块瓷砖,第一竖列共有    块瓷砖;(均用含n的代数式表示)铺设地面所用瓷砖的总块数为   (用含n的代数式表示,n表示第n个图形)

(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;

(3)黑瓷砖每块4元,白瓷砖每块3元,在问题(2)中,共需要花多少钱购买瓷砖?

(4)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.

查看答案和解析>>

科目: 来源: 题型:

【题目】解方程

(1)(x﹣5)2=16(直接开平方法) (2)x2﹣4x+1=0(配方法)

(3)x2+3x﹣4=0(公式法) (4)x2+5x﹣3=0(配方法)

查看答案和解析>>

科目: 来源: 题型:

【题目】把下列各数的序号填在相应的横线上:

①﹣5.32,②3,③﹣1,④7%,⑤0,⑥﹣5,⑦0.6,⑧+2019

1)整数有:_____

2)分数有:_____

3)负数有:_____

4)正数有:_____

5)非负数有:_____

6)有理数有:_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,对称轴为直线x=1的抛物线y=x2+bx+c,与x轴交于AB两点(点A在点B的左侧),且点A坐标为(-1,0).又P是抛物线上位于第一象限的点,直线APy轴交于点D,与抛物线对称轴交于点E,点C与坐标原点O关于该对称轴成轴对称.

(1)求点 B 的坐标和抛物线的表达式;

(2)当 AEEP=1:4 时,求点 E 的坐标;

(3)如图 2,(2)的条件下将线段 OC 绕点 O 逆时针旋转得到 OC ′,旋转角为 α(0°<α<90°),连接 C ′D、C′B, C ′B+ C′D 的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】【操作发现】如图 1,△ABC 为等边三角形,点 D AB 边上的一点,∠DCE=30°,将线段 CD 绕点 C 顺时针旋转 60°得到线段 CF,连接 AFEF. 请直接 写出下列结果:

① ∠EAF的度数为__________

DEEF之间的数量关系为__________

【类比探究】如图 2,△ABC 为等腰直角三角形,∠ACB=90°,点 D AB 边上的一点∠DCE=45°,将线段 CD 绕点 C 顺时针旋转 90°得到线段 CF,连接 AFEF.

①则∠EAF的度数为__________

② 线段 AEEDDB 之间有什么数量关系?请说明理由;

【实际应用】如图 3,△ABC 是一个三角形的余料.小张同学量得∠ACB=120°,AC=BC, 他在边 BC 上取了 DE 两点,并量得∠BCD=15°、∠DCE=60°,这样 CDCE 将△

ABC 分成三个小三角形,请求△BCD、△DCE、△ACE 这三个三角形的面积之比.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.

(1)求证:△BGF≌△FHC;

(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,在△ABC 中,∠C=90°,∠BAC 的平分线 AD BC于点 D,过点 D DEAD AB 于点 E,以 AE 为直径作⊙O

(1)求证:BC 是⊙O 的切线;

(2)若 AC=3,BC=4,求 BE 的长.

(3)在(2)的条件中,求 cosEAD 的值.

查看答案和解析>>

同步练习册答案