相关习题
 0  355114  355122  355128  355132  355138  355140  355144  355150  355152  355158  355164  355168  355170  355174  355180  355182  355188  355192  355194  355198  355200  355204  355206  355208  355209  355210  355212  355213  355214  355216  355218  355222  355224  355228  355230  355234  355240  355242  355248  355252  355254  355258  355264  355270  355272  355278  355282  355284  355290  355294  355300  355308  366461 

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=7,AC=6,∠A=45°,点D、E分别在边AB、BC上,将△BDE沿着DE所在直线翻折,点B落在点P处,PD、PE分别交边AC于点M、N,如果AD=2,PD⊥AB,垂足为点D,那么MN的长是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】在梯形ABCD中,AD∥BC,下列条件中,不能判断梯形ABCD是等腰梯形的是(  )

A. ∠ABC=∠DCB B. ∠DBC=∠ACB C. ∠DAC=∠DBC D. ∠ACD=∠DAC

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在锐角内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;…….照此规律,画6条不同射线,可得锐角________个.

查看答案和解析>>

科目: 来源: 题型:

【题目】在我市中小学生我的中国梦读书活动中,某校对部分学生做了一次主题为我最喜爱的图书的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类。学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图。

请你结合图中信息,解答下列问题:

(1)本次共调查了___名学生;

(2)被调查的学生中,最喜爱丁类图书的有___人,最喜爱甲类图书的人数占本次被调查人数的___%

(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,∠ABC=90°OABC外接圆,点D是圆上一点,点DB分别在AC两侧,且BD=BC,连接ADBDODCD,延长CB到点P,使∠APB=DCB

1)求证:AP为⊙O的切线;

2)若⊙O的半径为1,当OED是直角三角形时,求ABC的面积;

3)若BOEDOEAED的面积分别为abc,试探究abc之间的等量关系式,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线ODOE

1)如图①,当∠BOC70°时,求∠DOE的度数;

2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化若变化,说明理由;若不变,求∠DOE的度数;

3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,判断∠DOE的大小是否发生变化若变化,说明理由;若不变,求∠DOE的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD为矩形,ACEAC为底的等腰直角三角形,连接BEADAC分别于F. N,CM平分∠ACBBNM,下列结论:(1)BEED;(2)AB=AF;(3)EM=EA;(4)AM平分∠BAC,其中正确的结论有( )

A. 1B. 2

C. 3D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】如果∠α和∠β互补,且∠α>β,则下列表示∠β的余角的式子中:①90°﹣β;②∠α﹣90°α+β);α﹣β).正确的有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目: 来源: 题型:

【题目】宇航员翟志刚在太空进行了1935秒的舱外活动中,飞行了9 165 000 米,成为中国飞得最高、走得最快的人.将9 165 000 米保留两位有效数字用科学记数法记为( )

A.B.C.D.

查看答案和解析>>

同步练习册答案