相关习题
 0  355279  355287  355293  355297  355303  355305  355309  355315  355317  355323  355329  355333  355335  355339  355345  355347  355353  355357  355359  355363  355365  355369  355371  355373  355374  355375  355377  355378  355379  355381  355383  355387  355389  355393  355395  355399  355405  355407  355413  355417  355419  355423  355429  355435  355437  355443  355447  355449  355455  355459  355465  355473  366461 

科目: 来源: 题型:

【题目】如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AEDC的交点为O,连接DE

(1)求证:ADE≌△CED

(2)求证:DEAC

查看答案和解析>>

科目: 来源: 题型:

【题目】一蓄水池有水40m3,按一定的速度放水,水池里的水量y (m3)与放水时间t()有如下关系:

放水时间()

1

2

3

4

...

水池中水量(m)

38

36

34

32

...

下列结论中正确的是

A. yt的增加而增大B. 放水时间为15分钟时,水池中水量为8m3

C. 每分钟的放水量是2m3D. yt之间的关系式为y=38-2t

查看答案和解析>>

科目: 来源: 题型:

【题目】附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=6AC=10ADBC边上的中线,且AD=4,延长AD到点E,使DE=AD,连接CE

(1)求证:△AEC是直角三角形.

(2)BC边的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,将ABO绕点A顺时针旋转到AB1C1的位置,点B、O分别落在点B1C1处,点B1在x轴上,再将AB1C1绕点B1顺时针旋转到A1B1C2的位置,点C2在x轴上,将A1B1C2绕点C2顺时针旋转到A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则B2的坐标为_____;点B2016的坐标为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】已知一次函数y=kx+b的图象与y=x-1的图象平行,且经过点(26)

(1)求一次函数y=kx+b的表达式.

(2)求这个一次函数y=kx+b与坐标轴的两个交点坐标,并在直角坐标系中画出这个函数的图象.

查看答案和解析>>

科目: 来源: 题型:

【题目】某电压力锅生产厂家计划每天平均生产n台电压力锅,而实际产量与计划产量相比有出入.下表记录了某周五个工作日每天实际产量情况(超过计划产量记为正、少于计划产量记为负):

星期

实际生产量/

5

2

4

13

3

1)用含n的代数式表示本周前三天生产电压力锅的总台数;

2)该厂实行每日计件工资制:每生产一台电压力锅可得60元,若超额完成任务,则超过部分每台1另奖10元;少生产一台扣15.n=100时,那么该厂工人这一周的工资总额是多少元?

3)若将上面第(2)问中实行每日计件工资制改为实行每周计件工资制,其他条件不变,当n=100时,在此方式下这一周工人的工资与按日计件的工资哪一个更多?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】对于二次函数y=x2+mx+1,当0x≤2时的函数值总是非负数,则实数m的取值范围为(  )

A. m≥﹣2 B. ﹣4≤m≤﹣2 C. m≥﹣4 D. m≤﹣4m≥﹣2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,用棋盘摆出下列一组三角形,三角形每边有枚棋子,每个三角形的棋子总数是.

1)求

2)按此规律推断,当三角形边上有枚棋子时,该三角形的棋子总数 (用含的代数式表示);

3)当三角形一边上有25枚棋子时,该三角形的棋子总数等于多少?

4)当三角形的棋子总数是123枚时,该三角形一边上的棋子数是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

同步练习册答案