相关习题
 0  355485  355493  355499  355503  355509  355511  355515  355521  355523  355529  355535  355539  355541  355545  355551  355553  355559  355563  355565  355569  355571  355575  355577  355579  355580  355581  355583  355584  355585  355587  355589  355593  355595  355599  355601  355605  355611  355613  355619  355623  355625  355629  355635  355641  355643  355649  355653  355655  355661  355665  355671  355679  366461 

科目: 来源: 题型:

【题目】如图,把一个边长为a的正方形分成9个完全相同的小正方形,把最中间的一个小正方形涂成白色(图①),再对其他8个小正方形作同样的分割(分成9个完全相同的小正方形,把最中间的一个小正方形涂成白色(图②),继续同样的方法分割图形(图③),得到一些既复杂又漂亮的图形,它的每一部分放大,都和整体一模一样,它是波兰数学家谢尔宾斯基构造的,也被称为谢尔宾斯基地毯.求:

1)图③中最新的一个最小正方形的边长;

2)图③中所有涂黑部分的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).

(1)这次调查中,一共抽取了多少名学生?

(2)补全频数分布直方图;

(3)估计全校所有学生中有多少人乘坐公交车上学.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F.

求证:四边形AFCE是菱形.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD中,点E在边CD上,连结AEBE.给出下列五个关系式:①AD∥BC②DE=CE③∠1=∠2④∠3=∠4⑤ADBC=AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.

用序号写出一个真命题(书写形式如:如果×××,那么××);并给出证明;

用序号再写出三个真命题(不要求证明)

查看答案和解析>>

科目: 来源: 题型:

【题目】某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到购买某种本子30个和某种笔10支共需280元;购买某种本子50个和某种笔20枝共需500元。

(1)求这种本子和笔的单价;

(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.

(1)求证:△ACF∽△DAE;

(2)若S△AOC=,求DE的长;

(3)连接EF,求证:EF是⊙O的切线.

【答案】(1) 见解析; (2)3 ;(3)见解析.

【解析】试题分析:(1)根据圆周角定理得到BAC=90°,根据三角形的内角和得到ACB=60°根据切线的性质得到OAF=90°,∠DBC=90°,于是得到D=∠AFC=30°由相似三角形的判定定理即可得到结论;

(2)根据SAOC=,得到SACF=,通过ACF∽△DAE,求得SDAE=,过AAHDEH,解直角三角形得到AH=DH=DE,由三角形的面积公式列方程即可得到结论;

(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到OFG=(180°﹣∠EOF)=30°,于是得到AFO=∠GFO,过OOGEFG,根据全等三角形的性质得到OG=OA,即可得到结论.

试题解析:(1)证明:BCO的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°

OA=OC,∴∠AOC=60°,∵AFO的切线,∴∠OAF=90°,∴∠AFC=30°,∵DEO的切线,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE

(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵SAOC=,∴SACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴SDAE=,过AAHDEH,∴AH=DH=DE,∴SADE=DEAH=×=,∴DE=

(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFOAOFBOE中,∵∠OBE=∠OAF,∠OEB=∠AFOOA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过OOGEFG,∴∠OAF=∠OGF=90°,在AOFOGF中,∵∠OAF=∠OGF,∠AFO=∠GFOOF=OF,∴△AOF≌△GOF,∴OG=OA,∴EFO的切线.

型】解答
束】
25

【题目】如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.

(1)填空:点B的坐标为   

(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;

(3)①求证:

②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义一种对正整数nF运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行,例如,取n26,第三次F运算的结果是11.若n111,则第2019F运算的结果是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EFEBC上,FAC上)折叠,点C与点O恰好重合,则∠OEC=_______.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列结论:①几个有理数相乘,若其中负因数有奇数个,则积为负;②两个三次多项式的和一定是三次多项式;③若xyz0,则+++的值为0或﹣4;④若ab互为相反数,则=﹣1;⑤若xy,则.其中正确的个数有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】数轴上点A表示的数为10,点MN分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a, b满足|a-5|+(b-6)2=0.

(1)请真接与出a= , b=

(2)如图1,MA出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,P为线段ON的中点若MP=MA,t的值:

(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为tM运动到点A的右侧,若此时以MN, O, A为端点的所有线段的长度和为142,求此时点M对应的数.

查看答案和解析>>

同步练习册答案