科目: 来源: 题型:
【题目】某学校为了开展“阳光体育运动”,计划购买篮球与足球共
个,已知每个篮球的价格为
元,每个足球的价格为
元
(1)若购买这两类球的总金额为
元,求篮球和足球各购买了多少个?
(2)元旦期间,商家给出蓝球打九折,足球打八五折的优惠价,若购买这种篮球与足球各
个,那么购买这两类球一共需要多少钱?
查看答案和解析>>
科目: 来源: 题型:
【题目】国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t(小时)分成
,
,
,
四组,并绘制了统计图(部分).
组:
组:
组:
组:![]()
![]()
请根据上述信息解答下列问题:
(1)
组的人数是 ;
(2)本次调查数据的中位数落在 组内;
(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.
查看答案和解析>>
科目: 来源: 题型:
【题目】节约是中华民族的传统美德.为倡导市民节约用水的意识,某市对市民用水实行“阶梯收费”,制定了如下用水收费标准:每户每月的用水不超过
立方米时,水价为每立方米
元,超过
立方米时,超过的部分按每立方米
元收费.
(1)该市某户居民9月份用水
立方米(
),应交水费
元,请你用含
的代数式表示
;
(2)如果某户居民12月份交水费
元,那么这个月该户居民用了多少立方米水?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,要得到DG∥BC,则需要条件( )
![]()
A. CD⊥AB,EF⊥AB B. ∠1=∠2
C. ∠1=∠2,∠4+∠5=180° D. CD⊥AB,EF⊥AB,∠1=∠2
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,甲、乙、丙、丁四位同学从四块全等的等腰直角三角形纸板上裁下四块不同的纸板(阴影部分),他们的具体裁法如下:甲同学:如图1所示裁下一个正方形,面积记为S1;乙同学:如图2所示裁下一个正方形,面积记为S2;丙同学:如图3所示裁下一个半圆,使半圆的直径在等腰Rt△的直角边上,面积记为S3;丁同学:如图所示裁下一个内切圆,面积记为S4则下列判断正确的是( )
①S1=S2;②S3=S4;③在S1,S2,S3,S4中,S2最小.
![]()
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目: 来源: 题型:
【题目】某次试验中,测得两个变量v和m的对应数据如下表,则v和m之间的关系最接近下列函数中的( )
m | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
v | ﹣6.10 | ﹣2.90 | ﹣2.01 | ﹣1.51 | ﹣1.19 | ﹣1.05 | ﹣0.86 |
A. v=m2﹣2 B. v=﹣6m C. v=﹣3m﹣1 D. v=![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知直线y=kx(k>0)与双曲线
交于A、B两点,且点A的纵坐标为4,第一象限的双曲线上有一点
,过点P作PQ//y轴交直线AB于点Q.
(1)直接写出k的值及点B的坐标:
(2)求线段PQ的长;
(3)如果在直线y=kx上有一点M,且满足△BPM的面积等于12,求点M的坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为
,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
![]()
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得
≌
即可得
,则可证得
为
的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得
利用勾股定理即可求得
的长,又由OE∥AB,证得
根据相似三角形的对应边成比例,即可求得
的长,然后利用三角函数的知识,求得
与
的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
![]()
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是
的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为![]()
![]()
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,某日的钱塘江观潮信息如图:
![]()
按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=
t2+bt+c(b,c是常数)刻画.
(1)求m的值,并求出潮头从甲地到乙地的速度;
(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?
(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+
(t﹣30),v0是加速前的速度).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知正比例函数的图象与反比例函数的图象都经过点P(2,3),点D是正比例函数图象上的一点,过点D作y轴的垂线,垂足分别Q,DQ交反比例函数的图象于点A,过点A作x轴的垂线,垂足为B,AB交正比例函数的图于点E.
(1)求正比例函数解析式、反比例函数解析式.
(2)当点D的纵坐标为9时,求:点E的坐标.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com