相关习题
 0  355993  356001  356007  356011  356017  356019  356023  356029  356031  356037  356043  356047  356049  356053  356059  356061  356067  356071  356073  356077  356079  356083  356085  356087  356088  356089  356091  356092  356093  356095  356097  356101  356103  356107  356109  356113  356119  356121  356127  356131  356133  356137  356143  356149  356151  356157  356161  356163  356169  356173  356179  356187  366461 

科目: 来源: 题型:

【题目】如图,在一面靠墙的空地上用长为24 m的篱笆围成中间隔有二道篱笆的长方形花圃.设花圃的宽AB为x m,面积为S m2.

(1)求S与x的函数关系式及自变量的取值范围;

(2)已知墙的最大可用长度为8 m,

①求所围成花圃的最大面积;

②若所围花圃的面积不小于20 m2,请直接写出x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点O在直线MN上,过点O作射线OP,使∠MOP=130°,将一块直角三角板的直角顶点始终放在点O处.

1)如图①,当三角板的一边OA在射线OM上,另一边OB在直线MN的上方时,求∠POB的度数;

2)若将三角板绕点O旋转至图②所示的位置,此时OB恰好平分∠PON,求∠BOP和∠AOM 的度数;

3)若将三角板绕点O旋转至图③所示位置,此时OA在∠PON 的内部,若OP所在的直线平分∠MOB,求∠POA 的度数;

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点P从(03)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点p2019次碰到矩形的边时点P的坐标为(  )

A. 14 B. 50 C. 83 D. 64

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,ABC的边BCx轴上,AC两点的坐标分别为A(0,m),Cn,0),B(﹣5,0),且(n﹣3)2+ =0.一动点P从点B出发,以每秒2单位长度的速度沿射线BO匀速运动,设点P运动的时间为ts.

(1)求AC两点的坐标;

(2)连接PA,若PAB为等腰三角形,求点P的坐标;

(3)当点P在线段BO上运动时,在y轴上是否存在点Q,使POQAOC全等?若存在,请求出t的值并直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】(7分)如图,已知抛物线yx2bxc经过A(-1,0),B(3,0)两点.

(1)求抛物线的解析式和顶点坐标;

(2)当0<x<3时,求y的取值范围;

(3)点P为抛物线上一点,若SPAB=10,求出此时点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点C是线段AB的中点

1)如图,若点D在线段CB上,且BD1.5厘米,AD6.5厘米,求线段CD的长度;

2)若将(1)中的“点D在线段CB上”改为“点D在线段CB的延长线上”,其他条件不变,请画出相应的示意图,并求出此时线段CD的长度.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数y=3x2+36x+81.

(1)写出它的顶点坐标;

(2)当x取何值时,y随x的增大而增大;

(3)求出图象与x轴的交点坐标;

(4)当x取何值时,y有最小值,并求出最小值;

(5)当x取何值时,y<0.

查看答案和解析>>

科目: 来源: 题型:

【题目】新定义:我们把两个面积相等但不全等的三角形叫做偏等积三角形.

1)初步尝试:如图1,已知等腰直角ABC,∠ACB=90°,请用直尺和圆规将它分成两个三角形,使它们成为偏等积三角形,请保留作图痕迹.

2)理解运用:请在图2的方格纸中,画两个面积为2的三角形,使这两个三角形是偏等积三角形.

3)综合应用:如图3,已知ACD为直角三角形,∠ADC=90°,以ACAD为腰向外作等腰直角三角形ABC和等腰直角三角形ADE,∠CAB=DAE=90°,连结BE,求证:ACDABE为偏等积三角形.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形OABC 中,OA=5,AB=4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在OA边上的点E 处,分别以OC,OA 所在的直线为x 轴,y 轴建立平面直角坐标系.

(1)求OE 的长;

(2)求经过O,D,C 三点的抛物线的表达式;

(3)一动点P从点C 出发,沿CB以每秒2 个单位长的速度向点B运动,同时动点Q从E 点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t s,当t为何值时,DP=DQ.

查看答案和解析>>

同步练习册答案