相关习题
 0  356347  356355  356361  356365  356371  356373  356377  356383  356385  356391  356397  356401  356403  356407  356413  356415  356421  356425  356427  356431  356433  356437  356439  356441  356442  356443  356445  356446  356447  356449  356451  356455  356457  356461  356463  356467  356473  356475  356481  356485  356487  356491  356497  356503  356505  356511  356515  356517  356523  356527  356533  356541  366461 

科目: 来源: 题型:

【题目】如图,在ABC中,已知AB=AC,BAC和∠ACB的平分线相交于点D,ADC=125°,求∠ACB和∠BAC的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:

①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.

其中正确的有(  )

A. 4个 B. 3个 C. 2个 D. 1个

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分剪下,拼成右边的矩形,由图形①到图形②的变化过程能够验证的一个等式是(  )

A. a(a+b)=a2+ab B. a2﹣b2=(a+b)(a﹣b)

C. (a+b)2=a2+2ab+b2 D. a(a﹣b)=a2﹣ab

查看答案和解析>>

科目: 来源: 题型:

【题目】 阅读下面的材料

1,在ABC中,试说明∠A+B+C=180°

通过画平行线,将∠A、∠B、∠C作等量代换,使各角之和恰为一个平角,依辅助线不同而得多种方法:

解:如图2,延长BC到点D,过点CCEBA

因为BACE(作图所知)

所以∠B=2,∠A=1(两直线平行,同位角、内错角相等)

又因为∠BCD=BCA+2+1=180°(平角的定义)

所以∠A+B+ACB=180°(等量代换)

1)如图3,过BC上任一点F,作FHACFGAB,这种添加辅助线的方法能说∠A+B+C=180°吗?并说明理由.

2)还可以过点A作直线MNBC,或在三角形内取点PP作三边的平行线,请选择一种方法,画出相应图形,并说明∠A+B+C=180°

查看答案和解析>>

科目: 来源: 题型:

【题目】我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为(  )

A. 33 B. 301 C. 386 D. 571

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,抛物线y=ax2+2x+cx轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.

(1)求直线和抛物线的表达式;

(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,PDC为直角三角形?请直接写出所有满足条件的t的值;

(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】(问题解决)

一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?

小明通过观察、分析、思考,形成了如下思路:

思路一:将BPC绕点B逆时针旋转90°,得到BP′A,连接PP′,求出∠APB的度数;

思路二:将APB绕点B顺时针旋转90°,得到CP'B,连接PP′,求出∠APB的度数.

请参考小明的思路,任选一种写出完整的解答过程.

(类比探究)

如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,图②是边长为mn的正方形.

1请用图①中四个小长方形和图②中的正方形拼成一个大正方形,画出示意图(要求连接处既没有重叠,也没有空隙)

2请用两种不同的方法列代数式表示(1)中拼得的大正方形的面积;

3请直接写出(mn)2(mn)2mn这三个代数式之间的等量关系;

4根据4中的等量关系,解决如下问题:若ab6ab4,求(ab)2的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点C,E,F,B在同一直线上,点A,DBC异侧,AB∥CD,AE=DF,∠A=∠D.

(1)求证:AB=CD;

(2)若AB=CF,∠B=30°,求∠D的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点DAB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为_______厘米/秒时,能够在某一时刻使△BPD△CQP全等.

查看答案和解析>>

同步练习册答案