相关习题
 0  356412  356420  356426  356430  356436  356438  356442  356448  356450  356456  356462  356466  356468  356472  356478  356480  356486  356490  356492  356496  356498  356502  356504  356506  356507  356508  356510  356511  356512  356514  356516  356520  356522  356526  356528  356532  356538  356540  356546  356550  356552  356556  356562  356568  356570  356576  356580  356582  356588  356592  356598  356606  366461 

科目: 来源: 题型:

【题目】在矩形ABCD中,AD>AB,点PCD边上的任意一点(不含C,D两端点),过点PPFBC,交对角线BD于点F.

(1)如图1,将PDF沿对角线BD翻折得到QDF,QFAD于点E.求证:DEF是等腰三角形;

(2)如图2,将PDF绕点D逆时针方向旋转得到P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).

①若0°<α<BDC,即DF'在∠BDC的内部时,求证:DP'C∽△DF'B.

②如图3,若点PCD的中点,DF'B能否为直角三角形?如果能,试求出此时tanDBF'的值,如果不能,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】松雷中学刚完成一批校舍的修建,有一些相同的办公室需要粉刷墙面.一天3名一级技工去粉刷7个办公室,结果其中有90m2墙面未来得及粉刷;同样时间内4名二级技工粉刷了7个办公室之外,还多粉刷了另外的70m2墙面.每名一级技工比二级技工一天多粉刷40m2墙面.

(1)求每个办公室需要粉刷的墙面面积.

(2)已知每名一级技工每天需要支付费用100元,每名二级技工每天需要支付费用90元.松雷中学有40个办公室的墙面和720m2的展览墙需要粉刷,现有3名一级技工的甲工程队,4名二级技工的乙工程队,要来粉刷墙面.松雷中学有两个选择方案,方案一:全部由甲工程队粉刷;方案二:全部由乙工程队粉刷;若使得总费用最少,松雷中学应如何选择方案,请通过计算说明.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,已知抛物线y=﹣x2+bx+cx轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.

(1)求抛物线的表达式;

(2)设抛物线的对称轴为l,lx轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.

(3)如图2,连接BC,PB,PC,设PBC的面积为S.

①求S关于t的函数表达式;

②求P点到直线BC的距离的最大值,并求出此时点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】参照学习函数的过程与方法,探究函数y=的图象与性质.

因为y=,即y=﹣+1,所以我们对比函数y=﹣来探究.

列表:

x

﹣4

﹣3

﹣2

﹣1

1

2

3

4

y=﹣

1

2

4

﹣4

﹣1

1

y=

2

3

5

﹣3

﹣1

0

描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=相应的函数值为纵坐标,描出相应的点,如图所示:

(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;

(2)观察图象并分析表格,回答下列问题:

①当x<0时,yx的增大而   ;(填增大减小”)

y=的图象是由y=﹣的图象向   平移   个单位而得到;

③图象关于点   中心对称.(填点的坐标)

(3)设A(x1,y1),B(x2,y2)是函数y=的图象上的两点,且x1+x2=0,试求y1+y2+3的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线ABCD相交于点O,过点O作两条射线OMON,且AOMCON90°

(1)OC平分AOM,求AOD的度数.

(2)∠1BOC,求AOCMOD.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:△ACB和△DCE都是等腰直角三角形,∠ACB=DCE=90°,连接AEBD交于点OAEDC交于点MBDAC交于点N

(1)如图1,猜想AEBD的数量关系与位置关系,并加以证明.

(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出2中四对全等的直角三角形.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市为创建全国文明城市,开展美化绿化城市活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.5倍,这样可提前4年完成任务.

(1)问实际每年绿化面积多少万平方米?

(2)为加大创城力度,市政府决定从2017年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两车站相距,一列慢车从甲站开出,每小时行驶,一列快车从乙站开出,每小时行驶.(必须用方程解,方程以外的方法不计分)

1)两车同时开出,相向而行,多少小时相遇?

2)两车同时开出,同向而行,慢车在前,多少小时快车追上慢车?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知BC是⊙O的直径,点DBC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.

(1)求证:直线AD是⊙O的切线;

(2)若AEBC,垂足为M,O的半径为4,求AE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】探究下面的问题:

(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(ab),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.

(2)运用你所得到的公式计算:

10.7×9.3

查看答案和解析>>

同步练习册答案