科目: 来源: 题型:
【题目】已知,△ABC在平面直角坐标系中的位置如图所示(图中每个小方格边长均为1个单位长度).
(1)求△ABC的面积.
(2)△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+3,y0﹣4),将△ABC作同样的平移得到△A1B1C1,写出A1、B1、C1的坐标.A1 ,B1 ,C1 .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一个粒子在第一象限内及x轴,y轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x轴,y轴平行的方向来回运动,且每分钟移动1个长度单位.在第2020分钟时,这个粒子所在位置的坐标是( )
![]()
A.(4,45)B.(45,4)C.(44,4)D.(4,44)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.
(1)求y1的解析式;
(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:一次函数y=3x-2的图象与某反比例函数的图象的一个公共点的横坐标为1.
(1)(3分)求该反比例函数的解析式;
(2)(3分)将一次函数y=3x-2的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标;
(3)(2分)请直接写出一个同时满足如下条件的函数解析式:
①函数的图象能由一次函数y=3x-2的图象绕点(0,-2)旋转一定角度得到;
②函数的图象与反比例函数的图象没有公共点.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点。试探索BM和BN的关系,并证明你的结论。
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】随着科技与经济的发展,中国廉价劳动力的优势开始逐渐消失,而作为新兴领域的机器人产业则迅速崛起,机器人自动化线的市场也越来越大,并且逐渐成为自动化生产线的主要方式,某化工厂要在规定时间内搬运1200千元化工原料.现有A,B两种机器人可供选择,已知A型机器人比B型机器人每小时多搬运30千克,A型机器人搬运900千克所用的时间与B型机器人搬运600千克所用的时间相等.
![]()
(1)两种机器人每小时分别搬运多少化工原料?
(2)该工厂原计划同时使用这两种机器人搬运,工作一段时间后,A型机器人又有了新的搬运任务,但必须保证这批化工原料在11小时内全部搬运完毕.求:A型机器人至少工作几个小时,才能保证这批化工原料在规定的时间内完成.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,BD、BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②∠BEF=
(∠BAF+∠C); ③∠FGD=∠ABE+∠C;④∠F=
(∠BAC﹣∠C);其中正确的是_____.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组 | 频数 | 频率 |
第一组(0≤x<15) | 3 | 0.15 |
第二组(15≤x<30) | 6 | a |
第三组(30≤x<45) | 7 | 0.35 |
第四组(45≤x<60) | b | 0.20 |
(1)频数分布表中a=_____,b=_____,并将统计图补充完整;
(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?
(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】据媒体报道,2月29日,包括普通口罩、医用口罩、医用N95口罩在内,全国口罩日产能达到1.1亿只,日产量达到1.16亿只,分别是2月1日的52倍、12倍,进一步缓解了口罩供需矛盾,虽然还不能满足国内需求,但还是积极支援一些其他困难国家.日产量1.16亿用科学记数法表示为( )
A.1.16×1010B.11.6×109C.1.16×108D.1.6×109
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,直线y=kx+2与x轴正半轴相交于A(t,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A和点B,点C在第三象象限内,且AC⊥AB,tan∠ACB=
.
(1)当t=1时,求抛物线的表达式;
(2)试用含t的代数式表示点C的坐标;
(3)如果点C在这条抛物线的对称轴上,求t的值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com