科目: 来源: 题型:
【题目】如图,△ABC的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD于E,交AB于F,交⊙O于G。
(1)判断直线PA与⊙O的位置关系,并说明理由;
(2)求证:AG2=AF·AB;
(3)若⊙O的直径为10,AC=2
,AB=4
,求△AFG的面积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上且A(10,0),C(0,6),点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上点E处.
![]()
(1)求点E的坐标;
(2)求折痕CD所在直线的函数表达式;
(3)请你延长直线CD交x轴于点F. ①求△COF的面积;
②在x轴上是否存在点P,使S△OCP=
S△COF?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知如图,在 ABC 中,BAC 90° ,分别过顶点 B、C 作 A 点的直线的垂线垂足分别为 D、E,试探究线段 BD、CE、DE 之间的关系.
![]()
(1)当直线 DE 绕点 A 旋转至如图 1 的位置,直接写出 BD、CE、DE 之间的数量 为 ;
(2)当直线 DE 绕点 A 旋转至如图 2 的位置,直接写出 BD、CE、DE 之间的数量 为 ;
(3)当直线 DE 绕点 A 旋转至如图 3 的位置,写出 BD、CE、DE 之间的数量,并证明 你的结论;
(4)如图 4,如果将 ABC 放在直角坐标系中,若点 A 的坐标为(-1,1),求 OB-OC 的 值.请写出必要的解答步骤.
查看答案和解析>>
科目: 来源: 题型:
【题目】我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式乘方(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.
![]()
根据“杨辉三角”请计算(a+b)64的展开式中第三项的系数为( )
A. 2016 B. 2017 C. 2018 D. 2019
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读下面的文字,解答问题,例如:∵
<
<
,即2<
<3,∴
的整数部分为2,小数部分为(
﹣2).
请解答:(1)
的整数部分是 ,小数部分是
(2)∵2<
<3 ,∴1<4-
<2,∴4-
的整数部分是1,小数部分4-
-1=3-![]()
已知:9﹣
小数部分是m,9+
小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△DBC 中,DB=DC,A 为△DBC 外一点,且∠BAC=∠BDC,DE AC 于 E,
![]()
(1)求证:AD 平分△ABC 的外角;
(2)求
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知∠1=∠2,∠A=∠D,说明∠F与∠C相等的理由.
![]()
解:∵∠1=∠2( 已知 ),∠2=∠4 ( ),
∴∠1=∠4( 等量代换 ),
∴FB∥EC( ),
∴∠3=∠C( 两直线平行,同位角相等 ).
∵∠A=∠D( ),
∴ED∥AC( ),
∴∠F=∠3 ( ),
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图 ,AD 是∠BAC 的平分线,且 DF⊥AC 于 F,∠B=90°,DE=DC.
![]()
(1)求证:BE=CF.
(2)若△ADE 和△DCF 的面积分别是12和5,求△ABC 的面积.
(3)请你写出∠BAC与∠CDE有什么数量关系?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com