科目: 来源: 题型:
【题目】如图,在数轴上
点表示数
,
点表示数
,
表示
点和
点之间的距离,且
、
满足
数轴上有一动点
,从
点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为
秒
,
![]()
(1)点
表示的数为 ,点
表示的数为 .
(2)点
表示的数 (用含
的代数式表示);
(3)当点
运动 秒时,点
和点
之间距离为4;
(4)若数轴上另有一动点
,同时从
点出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当点
和点
之间距离为6时,求时间
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.
(1)如图a,求证:△BCP≌△DCQ;
(2)如图,延长BP交直线DQ于点E.
① 如图b,求证:BE⊥DQ;
② 如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由;
③ 若正方形ABCD的边长为10,DE=2,PB=PC,直接写出线段PB的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】四边形
是长方形,面积为![]()
(1)如图1,
是
边上一点,连接
、
,则三角形
的面积为 (用含
的代数式表示).
(2)
是长方形
内一点,连接
、
、
、
,三角形
的面积为
.
①如图2,则三角形
的面积为 ;(用含
、
的代数式表示)
②如图3,连接
,若三角形
的面积为
,则三角形
的面积为 .(用含
的代数式表示)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】甲.乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠一盒乒乓球;乙店的优惠办法是:按定价的9折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于4盒).
(1)用代数式表示(所填式子需化简):当购买乒乓球的盒数为
盒时,在甲店购买需付款 元;在乙店购买需付款 元.
(2)当购买乒乓球盒数为10盒时,到哪家商店购买比较合算?说出你的理由.
(3)当购买乒乓球盒数为10盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付款几元?
查看答案和解析>>
科目: 来源: 题型:
【题目】(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围。同学通过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.根据SAS可证得到△ADC≌△EDB,从而根据“三角形的三边关系”可求得AD的取值范围是 。解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
![]()
(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.
(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:
,AB=10米,AE=15米.(i=1:
是指坡面的铅直高度BH与水平宽度AH的比)
![]()
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据:
1.414,
1.732)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,△ABC,∠ACB=90°,AC=5,DE⊥BD,BC=BD,∠ABE=∠CBD.
![]()
(1)求证:△ABC≌△EBD
(2)延长AC交DE于F点,若BC⊥BD,CF=4,求EF的长度.
查看答案和解析>>
科目: 来源: 题型:
【题目】填写下表
序号 |
| 1 | 2 | … |
① |
| 5 |
| … |
② |
| 2 |
| … |
③ |
|
| 4 | … |
随着
值的逐渐变大,回答下列问题
(1)当
时,这三个代数式中 的值最小;
(2)你预计代数式的值最先超过1000的是代数式 ,此时
的值为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.
(1)初三(1)班接受调查的同学共有多少名;
(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;
(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】世界杯比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14.(假定开始计时时,守门员正好在球门线上)
(1)守门员最后是否回到球门线上?
(2)守门员离开球门线的最远距离达多少米?
(3)如果守门员离开球门线的距离超过10米(不包括10米),则对方球员挑射极可能造成破门.请问在这一时间段内,对方球员有几次挑射破门的机会?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com