科目: 来源: 题型:
如图①,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.
(1) 求证:DE-BF = EF.
(2) 当点G为BC边中点时, 试探究线段EF与GF之间的数量关系, 并说明理由.
(3) 若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).
![]()
![]()
查看答案和解析>>
科目: 来源:不详 题型:单选题
| 11a3 |
| 4x |
|
| ||
| 3 |
| 1 | ||
|
| 4a2+b2 |
| 18x+9y |
| A.2个 | B.3个 | C.4个 | D.5个 |
查看答案和解析>>
科目: 来源: 题型:
如图①, 已知抛物线
(a≠0)与
轴交于点A(1,0)和点B (-3,0),与y轴交于点C.
(1) 求抛物线的解析式;
(2) 设抛物线的对称轴与
轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com