相关习题
 0  52108  52116  52122  52126  52132  52134  52138  52144  52146  52152  52158  52162  52164  52168  52174  52176  52182  52186  52188  52192  52194  52198  52200  52202  52203  52204  52206  52207  52208  52210  52212  52216  52218  52222  52224  52228  52234  52236  52242  52246  52248  52252  52258  52264  52266  52272  52276  52278  52284  52288  52294  52302  366461 

科目: 来源:不详 题型:解答题

已知一次函数y=kx+m,二次函数y=2ax2+2bx+c和y=ax2+bx+c-1的图象分别为l、E1、E2,l交E1于B、C两点,且满足下列条件:
I)b为整数.
II)B(2-2
2
,3-2
2
),C(2+2
2
,3+2
2
).
Ⅲ)两个二次函数的最小值差为1.
(1)如l与E2交于A、D两点,求|AD|值.
(2)问是否存在一点P,从P出发作一射线分别交E1、E2于P1,P2,使得PP1:PP2为常数,并简述你的理由.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c,对任意实数x都有x≤ax2+bx+c≤(
x+1
2
)
2
成立.
(1)当x=1时,求y的值;
(2)若当x=-1时,y=0,求a、b、c的值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

用总长为32m的篱笆墙围成一个扇形的花园.
(1)当扇形花园的半径为6m时,求扇形花园的面积;
(2)设扇形花园的半径为x(m),面积为y(m2),求y关于x的函数关系式,并写出x的取值范围;
(3)当扇形花园的半径为多少时,花园的面积最大?最大面积是多少?此时,这个扇形的圆心角约是多少度?(精确到0.1度)

查看答案和解析>>

科目: 来源:贺州 题型:解答题

已知抛物线y=ax2+6x-8与直线y=-3x相交于点A(1,m).
(1)求抛物线的解析式;
(2)请问(1)中的抛物线经过怎样的平移就可以得到y=ax2的图象?
(3)设抛物线y=ax2上依次有点P1,P2,P3,P4,…,其中横坐标依次是2,4,6,8,…,纵坐标依次为n1,n2,n3,n4,…,试求n3-n1003的值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是(-
b
2a
4ac-b2
4a
),与y
轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(2)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式______,
伴随直线的解析式______;
(3)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是______.

查看答案和解析>>

科目: 来源:内江 题型:解答题

二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(x2,0)和B(x1,0)两点,A点在原点左方,B点在原点右方,与y轴交于C(0,y1),且知C点在原点上方,y1>x1,BC=10,x1,y1是方程x2-(k+9)x+3(k+11)=0的两根,直线y=mx+n过A、C两点,且tan∠CAB=4.
(1)求:A、B、C三点的坐标;
(2)求:过A、C两点的一次函数的解析式;
(3)求:过A、B、C三点的二次函数的解析式.

查看答案和解析>>

科目: 来源:不详 题型:单选题

若二次函数y=(m+1)x2+m2-2m-3的图象经过原点,则m的值必为(  )
A.-1或3B.-1C.3D.无法确定

查看答案和解析>>

科目: 来源:不详 题型:解答题

某经销店经销一种建筑材料,当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需成本及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)求出y与x的函数关系式(不要求写出x的取值范围);
(2)该经销店要获得最大月利润,售价应定为每吨多少元;
(3)小王说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.

查看答案和解析>>

科目: 来源:北塘区二模 题型:解答题

一天,骡子和驴子驮着酒囊走在路上,因为酒囊重量所压迫,驴子痛苦地抱怨着,骡子听到后说:“抱怨的应该是我才对呀!因为如果你给我1袋酒,我驮的重量就是你的2倍;若你从我这儿拿去1袋,那么你我驮的重量才相等呀!”驴子听了骡子的话,心情好了许多.好不容易到了目的地,准备把酒倒在一个不规则的酒缸里;已知每袋酒的体积是1升,酒缸的高度为1米,其中酒缸所盛酒的体积V(升)与液面高度h(米)满足如下的函数关系:当0≤h≤0.5时,V1=-8h2+20h;当0.5≤h≤1时,V2=20h-2.聪明的同学,请问:
(1)骡子和驴子各驮了几袋酒囊?
(2)酒缸能否盛得下骡子和驴子所驮的酒?如果能,请计算出酒在酒缸里的液面高度;如果不能,请说明理由.

查看答案和解析>>

科目: 来源:白云区一模 题型:解答题

已知抛物线的解析式为y=-x2+2mx+4-m2
(1)求证:不论m取何值,此抛物线与x轴必有两个交点,且两交点A、B之间的距离为定值;
(2)设点P为此抛物线上一点,若△PAB的面积为8,求符合条件的所有点P的坐标(可用含m的代数式表示)
(3)若(2)中△PAB的面积为s(s>0),试根据面积s值的变化情况,确定符合条件的点P的个数.

查看答案和解析>>

同步练习册答案