相关习题
 0  52175  52183  52189  52193  52199  52201  52205  52211  52213  52219  52225  52229  52231  52235  52241  52243  52249  52253  52255  52259  52261  52265  52267  52269  52270  52271  52273  52274  52275  52277  52279  52283  52285  52289  52291  52295  52301  52303  52309  52313  52315  52319  52325  52331  52333  52339  52343  52345  52351  52355  52361  52369  366461 

科目: 来源:不详 题型:填空题

如果一条抛物线的形状与y=-
1
3
x2+2的形状相同,且顶点坐标是(4,-2),则它的函数关系式是______.

查看答案和解析>>

科目: 来源:不详 题型:填空题

已知一抛物线和y=2x2的图象形状相同,对称轴平行于y轴,且顶点坐标为(-1,3),则它所对应的函数关系式为______.

查看答案和解析>>

科目: 来源:哈尔滨 题型:解答题

小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x是多少时,矩形场地面积S最大,最大面积是多少?

查看答案和解析>>

科目: 来源:不详 题型:单选题

喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x元(x正整数),每星期销售该商品的利润为y元,则y与x的函数解析式为(  )
A.y=-10x2+100x+2000B.y=10x2+100x+2000
C.y=-10x2+200xD.y=-10x2-100x+2000

查看答案和解析>>

科目: 来源:不详 题型:解答题

附加题
对于二次函数y=-x2+8x-6和一次函数y=3x-4,把y=t(-x2+8x-6)+(2-3t)(3x-4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线C.现有点A(2,4)和抛物线C上的点B(-3,n),请完成下列任务:
【尝试】
(1)判断点A是否在抛物线C上;
(2)求n的值
【发现】
     通过(1)和(2)的演算可知,对于t取任何不为零的实数,抛物线C总过固定的两点,则这两点的坐标分别是______.
【应用】
     二次函数y=4x2-6x+9是二次函数y=-x2+8x-6和一次函数y=3x-4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.

查看答案和解析>>

科目: 来源:不详 题型:填空题

飞行中的炮弹经x秒后的高度为y米,且高度与时间的关系为y=ax2+bx+c(a≠0),若此炮弹在第7秒与第14秒时的高度相等,则炮弹在最高处的时间是第______秒.

查看答案和解析>>

科目: 来源:不详 题型:单选题

若二次函数y=x2-2x+c图象的顶点在x轴上,则c等于(  )
A.-1B.1C.
1
2
D.2

查看答案和解析>>

科目: 来源:不详 题型:解答题

某超市销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现:若以每箱50元销售,平均每天可销售90箱,在此基础上,若价格每提高1元,则平均每天少销售3箱.
(1)写出平均每天销售y箱与每箱售价x元之间的函数关系式;
(2)求出超市平均每天销售这种牛奶的利润(ω)元与每箱的售价(x)元之间的二次函数的关系式;
(3)当牛奶售价为多少时,平均每天的利润最大,最大利润为多少?

查看答案和解析>>

科目: 来源: 题型:

随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.

(1)     若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?

(2)     为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.

查看答案和解析>>

科目: 来源:吉林 题型:解答题

已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是(-
b
2a
4ac-b2
4a
)
,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式 ______,伴随直线的解析式 ______;
(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是 ______;
(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.

查看答案和解析>>

同步练习册答案