相关习题
 0  52203  52211  52217  52221  52227  52229  52233  52239  52241  52247  52253  52257  52259  52263  52269  52271  52277  52281  52283  52287  52289  52293  52295  52297  52298  52299  52301  52302  52303  52305  52307  52311  52313  52317  52319  52323  52329  52331  52337  52341  52343  52347  52353  52359  52361  52367  52371  52373  52379  52383  52389  52397  366461 

科目: 来源:中考真题 题型:解答题

在矩形ABCD中,AB=2,AD=3,P是BC上的任意一点(P 与B 、C 不重合),过点P 作AP ⊥PE ,垂足为P ,PE 交CD 于点E。
(1)连接AE ,当△APE 与△ADE 全等时,求BP 的长;
(2)若设BP 为x ,CE 为y ,试确定y 与x 的函数关系式,当x取何值时,y的值最大?最大值是多少?
(3)若PE∥BD,试求出此时BP的长。

查看答案和解析>>

科目: 来源:中考真题 题型:解答题

已知抛物线经过A(2,0),设顶点为点P,与x轴的另一交点为点B。
(1)求b的值,求出点P、点B的坐标;
(2)如图,在直线 y=x上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由。

查看答案和解析>>

科目: 来源:期末题 题型:解答题

已知函数y=x2+bx-1的图象经过点(3,2)
(1)求这个函数的解析式;
(2)画出它的图象,并指出图象的顶点坐标;
(3)当x>0时,求使y≥2的x的取值范围.

查看答案和解析>>

科目: 来源:期末题 题型:解答题

已知抛物线y=ax2+bx+c经过A(-1,0),B(2,-3),C(3,0)三点.
(1)求抛物线的解析式;
(2)若抛物线的顶点为D,E是抛物线上的点,并且满足△AEC的面积是△ADC面积的3倍,求点E的坐标;
(3)设点M是抛物线上,位于x轴的下方,且在对称轴左侧的一个动点,过M作x轴的平行线,交抛物线于另一点N,再作MQ⊥x轴于Q,NP⊥x轴于P.试求矩形MNPQ周长的最大值.

查看答案和解析>>

科目: 来源:中考真题 题型:解答题

如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h,已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m。
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围。

查看答案和解析>>

科目: 来源:中考真题 题型:解答题

如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点。
(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应)。

查看答案和解析>>

科目: 来源:中考真题 题型:解答题

如图所示,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C (-2,6 )。
(1)求经过A、B、C、三点的抛物线解析式;
(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;
(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问:以A、B、F为顶点的三角形与△ABC相似吗?

查看答案和解析>>

科目: 来源:中考真题 题型:解答题

如图所示,在平面直角坐标系中,直线l:y=-2x+b(b≥0)的位置随b的不同取值而变化。
(1)已知⊙M的圆心坐标为(4,2),半径为2。
当 b=             时,直线l:y= -2x + b (b≥0)经过圆心M;
当 b=             时,直线l:y= -2x + b (b≥0)与⊙M相切;
(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2)。设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式。

查看答案和解析>>

科目: 来源:中考真题 题型:解答题

如图,抛物线y=x2x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC。
(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D,设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π)。

查看答案和解析>>

科目: 来源:中考真题 题型:解答题

如图,抛物线m :y=(x+h )2+k 与x 轴的交点为A 、B ,与y 轴的交点为C ,顶点为M (3,),将抛物线m 绕点B旋转180°,得到新的抛物线n,它的顶点为D。
(1)求抛物线n的解析式;
(2)设抛物线n与x 轴的另一个交点为E,点P是线段ED上一个动点(P 不与E 、D 重合),过点P 作y 轴的垂线,垂足为F ,连接EF .如果P 点的坐标为(x ,y ),△PEF的面积为S,求S 与x的函数关系式,写出自变量x 的取值范围,并求出S 的最大值;
(3)设抛物线m 的对称轴与x 轴的交点为G ,以G为圆心,A、B两点间的距离为直径作⊙G ,试判断直线CM与⊙G 的位置关系,并说明理由。

查看答案和解析>>

同步练习册答案