相关习题
 0  52236  52244  52250  52254  52260  52262  52266  52272  52274  52280  52286  52290  52292  52296  52302  52304  52310  52314  52316  52320  52322  52326  52328  52330  52331  52332  52334  52335  52336  52338  52340  52344  52346  52350  52352  52356  52362  52364  52370  52374  52376  52380  52386  52392  52394  52400  52404  52406  52412  52416  52422  52430  366461 

科目: 来源:山东省中考真题 题型:解答题

某电子厂商投产一种新型电子厂品,每件制造成本为18 元,试销过程中发现,每月销售量y (万件)与销售单价x (元)之间的关系可以近似地看作一次函数y= ﹣2x+100 .(利润= 售价﹣制造成本)
(1 )写出每月的利润z (万元)与销售单价x (元)之间的函数关系式;
(2 )当销售单价为多少元时,厂商每月能获得3502 万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
(3 )根据相关部门规定,这种电子产品的销售单价不能高于32 元,如果厂商要获得每月不低于350 万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?

查看答案和解析>>

科目: 来源:山东省中考真题 题型:单选题

将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为
[     ] 
A.y=3(x+2)2+3
B.y=3(x﹣2)2+3
C.y=3(x+2)2﹣3
D.y=3(x﹣2)2﹣3

查看答案和解析>>

科目: 来源:山东省中考真题 题型:解答题

如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2)。
(1)求y关于x的函数关系式,并写出x的取值范围
(2)求△PBQ的面积的最大值

查看答案和解析>>

科目: 来源:山东省中考真题 题型:解答题

如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为
(1,0).若抛物线y=﹣x2+bx+c过A、B两点.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;
(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.

查看答案和解析>>

科目: 来源:上海中考真题 题型:解答题

如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=,EF⊥OD,垂足为F.
(1)求这个二次函数的解析式;
(2)求线段EF、OF的长(用含t的代数式表示);
(3)当∠ECA=∠OAC时,求t的值.

查看答案和解析>>

科目: 来源:四川省中考真题 题型:解答题

如图,在平面直角坐标系xOy中,AB⊥x轴于点B,AB=3,tan∠AOB=,将△OAB绕着原点O逆时针旋转90°,得到△OA1B1;再将△OA1B1绕着线段OB1的中点旋转180°,得到△OA2B1,抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2
(1)求抛物线的解析式.
(2)在第三象限内,抛物线上的点P在什么位置时,△PBB1的面积最大?求出这时点P的坐标.
(3)在第三象限内,抛物线上是否存在点Q,使点Q到线段BB1的距离为?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:山东省中考真题 题型:解答题

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4),以A为顶点的抛物线y=ax2+bx+c过点C,动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动,点P,Q的运动速度均为每秒1个单位,运动时间为t秒,过点P作PE⊥AB交AC于点E。
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?
(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值。

查看答案和解析>>

科目: 来源:四川省中考真题 题型:操作题

问题背景
若矩形的周长为1 ,则可求出该矩形面积的最大值. 我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:(x﹥0),利用函数的图象或通过配方均可求得该函数的最大值。
提出新问题
若矩形的面积为1 ,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
分析问题
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:(x﹥0),问题就转化为研究该函数的最大(小)值了。
解决问题
借鉴我们已有的研究函数的经验,探索函数(x﹥0)的最大(小)值。
(1)实践操作:填写下表,并用描点法画出函数(x﹥0)的图象:
(2 )观察猜想:观察该函数的图象,猜想当x=         时,函数(x﹥0)有最    (填“大”或“小”)是            
(3)推理论证:问题背景中提到,通过配方可求二次函数(x﹥0)的最大值,请你尝试通过配方求函数(x﹥0)的最大(小)值,以证明你的猜想。〔提示:当x>0时,x=

查看答案和解析>>

科目: 来源:四川省中考真题 题型:解答题

如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A,C,D均在坐标轴上,且AB=5,sinB=
(1)求过A,C,D三点的抛物线的解析式;
(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;
(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.

查看答案和解析>>

科目: 来源:甘肃省中考真题 题型:解答题

如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.
(1)求抛物线对应的函数关系式;
(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;
(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案