相关习题
 0  52313  52321  52327  52331  52337  52339  52343  52349  52351  52357  52363  52367  52369  52373  52379  52381  52387  52391  52393  52397  52399  52403  52405  52407  52408  52409  52411  52412  52413  52415  52417  52421  52423  52427  52429  52433  52439  52441  52447  52451  52453  52457  52463  52469  52471  52477  52481  52483  52489  52493  52499  52507  366461 

科目: 来源:安徽省中考真题 题型:解答题

已知圆P的圆心在反比例函数图象上,并与x轴相交于A、B两点,且始终与y轴相切于定点C(0,1)。
(1)求经过A、B、C三点的二次函数图象的解析式;
(2)若二次函数图象的顶点为D,问当k为何值时,四边形ADBP为菱形。


图1                                                   图2

查看答案和解析>>

科目: 来源:福建省中考真题 题型:解答题

如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动,过点N作NP⊥BC,交AC于点P,连接MP,已知动点运动了x秒。

(1)请直接写出PN的长;(用含x的代数式表示)
(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值。
(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由。

查看答案和解析>>

科目: 来源:北京中考真题 题型:解答题

在平面直角坐标系xOy中,抛物线经过P(,5),A(0,2)两点。
(1)求此抛物线的解析式;
(2)设抛物线的顶点为B,将直线AB沿y轴向下平移两个单位得到直线l,直线l与抛物线的对称轴交于C点,求直线l的解析式;
(3)在(2)的条件下,求到直线OB,OC,BC距离相等的点的坐标。

查看答案和解析>>

科目: 来源:福建省中考真题 题型:解答题

如图1,在△ABC中,∠A=90°,AB=4,AC=3,M是边AB上的动点(M不与A,B重合),MN∥BC交AC于点N,△AMN关于MN的对称图形是△PMN,设AM=x。
(1)用含x的式子表示△AMN的面积(不必写出过程);
(2)当x为何值时,点P恰好落在边BC上;
(3)在动点M的运动过程中,记△PMN与梯形MBCN重叠部分的面积为y,试求y关于x的函数关系式;并求x为何值时,重叠部分的面积最大,最大面积是多少?

查看答案和解析>>

科目: 来源:福建省中考真题 题型:解答题

如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC。
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式;
(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形,若存在,求出所有符合条件的点P坐标;不存在,请说明理由。

查看答案和解析>>

科目: 来源:广东省中考真题 题型:解答题

如图,正方形ABCD的边长为3a,两动点E、F分别从顶点B、C同时开始以相同速度沿BC、CD运动,与△BCF相应的△EGH在运动过程中始终保持△EGH ≌△BCF,对应边EG=BC,B、E、C、G在一直线上。
(1)若BE=a,求DH的长;
(2)当E点在BC边上的什么位置时,△DHE的面积取得最小值?并求该三角形面积的最小值。

查看答案和解析>>

科目: 来源:福建省中考真题 题型:解答题

已知:矩形纸片ABCD中,AB=26厘米,BC=18.5厘米,点E在AD上,且AE=6厘米,点P是AB边上一动点,按如下操作:步骤一,折叠纸片,使点P与点E重合,展开纸片得折痕MN(如图1所示);
步骤二,过点P作PT⊥AB,交MN所在的直线于点Q,连接QE(如图2所示)。
(1)无论点P在AB边上任何位置,都有PQ______QE(填“>”、“=”、“<”号);
(2)如图3所示,将纸片ABCD放在直角坐标系中,按上述步骤一、二进行操作:
①当点P在A点时,PT与MN交于点Q1,Q1点的坐标是( , );
②当PA=6厘米时,PT与MN交于点Q2,Q2点的坐标是( , );
③当PA=12厘米时,在图3中画出MN,PT(不要求写画法),并求出MN与PT的交点Q3的坐标;
(3)点P在运动过程,PT与MN形成一系列的交点Q1,Q2,Q3,…观察、猜想:众多的交点形成的图象是什么?并直接写出该图象的函数表达式。

查看答案和解析>>

科目: 来源:甘肃省中考真题 题型:解答题

“中山桥”是位于兰州市中心、横跨黄河之上的一座百年老桥(图1),桥上有五个拱形桥架紧密相联,每个桥架的内部有一个水平横梁和八个垂直于横梁的立柱,气势雄伟,素有“天下黄河第一桥”之称,如图2,一个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成,建立如图所示的平面直角坐标系,已知跨度AB=44m,∠A=45°,AC1=4m,D2的坐标为(-13,-1.69),求:
(1)抛物线D1OD8的解析式;
(2)桥架的拱高OH。

查看答案和解析>>

科目: 来源:山东省中考真题 题型:单选题

已知二次函数的图象如图所示,则这个二次函数的表达式为

[     ]

A.y=x2-2x+3
B.y=x2-2x-3
C.y=x2+2x-3
D.y=x2+2x+3

查看答案和解析>>

科目: 来源:山东省中考真题 题型:解答题

已知:如图,直线与x轴相交于点A,与直线相交于点P。

(1)求点P的坐标;
(2)请判断△OPA的形状并说明理由;
(3)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B,设运动t秒时,矩形EBOF与△OPA重叠部分的面积为S。
求:①S与t之间的函数关系式;
②当t为何值时,S最大,并求S的最大值。

查看答案和解析>>

同步练习册答案