相关习题
 0  52332  52340  52346  52350  52356  52358  52362  52368  52370  52376  52382  52386  52388  52392  52398  52400  52406  52410  52412  52416  52418  52422  52424  52426  52427  52428  52430  52431  52432  52434  52436  52440  52442  52446  52448  52452  52458  52460  52466  52470  52472  52476  52482  52488  52490  52496  52500  52502  52508  52512  52518  52526  366461 

科目: 来源:贵州省中考真题 题型:解答题

某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数,其图象如图所示。
(1)每天的销售数量m(件)与每件的销售价格x(元)的函数表达式是___________;
(2)求该商场每天销售这种商品的销售利润y(元)与每件的销售价格x(元)之间的函数表达式;
(3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加?

查看答案和解析>>

科目: 来源:贵州省月考题 题型:解答题

如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D。
(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:福建省中考真题 题型:填空题

某同学利用描点法画二次函数y=ax2+bx+c(a≠0)的图象时,列出的部分数据如下表:
x
0
1
2
3
4
y
3
0
-2
0
3
经检查,发现表格中恰好有一组数据计算错误,请你根据上述信息写出该二次函数的解析式:(    )。

查看答案和解析>>

科目: 来源:福建省中考真题 题型:解答题

如图1,已知点B(1,3)、C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD。
(1)填空:A点坐标为(____,____),D点坐标为(____,____);
(2)若抛物线y=x2+bx+c经过C、D两点,求抛物线的解析式;
(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由。(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-,顶点坐标是(-

查看答案和解析>>

科目: 来源:广西自治区中考真题 题型:解答题

如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP。

(1)点B的坐标为____;用含t的式子表示点P的坐标为____;
(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6)并求t为何值时,S有最大值?
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:广东省中考真题 题型:解答题

如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线交折线OAB于点E。
(1)记△ODE的面积为S,求S与b的函数关系式;
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由。

查看答案和解析>>

科目: 来源:福建省中考真题 题型:解答题

如图,在△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,动点P、Q分别从A、C两点同时出发,其中点P以1cm/s的速度沿AC向终点C移动;点Q以cm/s的速度沿CB向终点B移动,过P作PE∥CB交AD于点E,设动点的运动时间为x秒。
(1)用含x的代数式表示EP;
(2)当Q在线段CD上运动几秒时,四边形PEDQ是平行四边形;
(3)当Q在线段BD(不包括点B、点D)上运动时,求四边形EPDQ面积的最大值。

查看答案和解析>>

科目: 来源:福建省中考真题 题型:解答题

如图,直线y=-3x-3分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△DOC,抛物线y=ax2+bx+c经过A、B、C三点。
(1)填空:A(____,____)、B(____,____)、C(____,____);
(2)求抛物线的函数关系式;
(3)E为抛物线的顶点,在线段DE上是否存在点P,使得以C、D、P为顶点的三角形与△DOC相似?若存在,请求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:广西自治区中考真题 题型:解答题

如图,在直角梯形OABC中,CB∥OA,∠OAB=90°,点O为坐标原点,点A在x轴的正半轴上,对角线OB,AC相交于点M,OA=AB=4,OA=2CB。

(1)线段OB的长为____,点C的坐标为____;
(2)求△OCM的面积;
(3)求过O,A,C三点的抛物线的解析式;
(4)若点E在(3)的抛物线的对称轴上,点F为该抛物线上的点,且以A,O,F,E四点为顶点的四边形为平行四边形,求点F的坐标。

查看答案和解析>>

科目: 来源:广东省中考真题 题型:解答题

儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%,商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x元之间的函数关系为y=20+4x(x>0)。
(1)求M型服装的进价;
(2)求促销期间每天销售M型服装所获得的利润W的最大值。

查看答案和解析>>

同步练习册答案