相关习题
 0  52336  52344  52350  52354  52360  52362  52366  52372  52374  52380  52386  52390  52392  52396  52402  52404  52410  52414  52416  52420  52422  52426  52428  52430  52431  52432  52434  52435  52436  52438  52440  52444  52446  52450  52452  52456  52462  52464  52470  52474  52476  52480  52486  52492  52494  52500  52504  52506  52512  52516  52522  52530  366461 

科目: 来源:四川省中考真题 题型:解答题

如图,已知抛物线经过原点O,与x轴交于另一点A,它的对称轴x=2与x轴交于点C,直线y=2x+1经过抛物线上一点B(m,-3),且与y轴、直线x=2分别交于点D,E。
(1)求抛物线对应的函数解析式并用配方法把这个解析式化成y=a(x-h)2+k的形式;
(2)求证:CD⊥BE;
(3)在对称轴x=2上是否存在点P,使△PBE是直角三角形,如果存在,请求出点P的坐标,并求出△PAB的面积;如果不存在,请说明理由。

查看答案和解析>>

科目: 来源:浙江省中考真题 题型:解答题

已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D,若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线。
(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式;
(2)如图2,若抛物线y=a(x-m)2+n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式;
(3)如图3,若抛物线y=a(x-m)2+n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形。
①用含b的代数式表示m、n的值;
②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示),若不存在,请说明理由。

查看答案和解析>>

科目: 来源:浙江省中考真题 题型:解答题

已知两直线l1,l2分别经过点A(1,0),点B(-3,0),并且当两直线同时相交于y正半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l2交于点K,如图所示。
(1)求点C的坐标,并求出抛物线的函数解析式;
(2)抛物线的对称轴被直线l1,抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由。
(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标。

查看答案和解析>>

科目: 来源:浙江省中考真题 题型:解答题

在平面直角坐标系中,如图1,将个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C。
 
(1)当n=1时,如果=-1,试求b的值;
(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;
(3)将矩形OABC绕点O顺时针旋转,使得点B落到轴的正半轴上,如果该抛物线同时经过原点O。
①试求当n=3时a的值;
②直接写出a关于n的关系式。

查看答案和解析>>

科目: 来源:浙江省中考真题 题型:解答题

已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B。
(1)求二次函数的解析式及顶点P的坐标;
(2)如图1,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒个单位长度的速度由点P向点O运动,过点M作直线MN∥x轴,交PB于点N,将△PMN沿直线MN对折,得到△P1MN,在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒,求S关于t的函数关系式。

查看答案和解析>>

科目: 来源:福建省中考真题 题型:解答题

如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB、AC上,且G、F分别是AB、AC的中点。
(1)直接写出△AGF与△ABC的面积的比值;
(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止,设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图2)。
①探究1:在运动过程中,四边形AEF′F能否是菱形?若能,请求出此时x的值;若不能,请说明理由。
②探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式。

查看答案和解析>>

科目: 来源:浙江省中考真题 题型:解答题

在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线(a<0)过矩形顶点B、C。
(1)当n=1时,如果a=-1,试求b的值;
(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;
(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O。
①试求当n=3时a的值;
②直接写出a关于n的关系式。

查看答案和解析>>

科目: 来源:黑龙江省中考真题 题型:解答题

已知二次函数的图象经过点(0,3),(-3,0),(2, -5),且与x轴交于A、B两点。
(1)试确定此二次函数的解析式;
(2)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,试说明理由。

查看答案和解析>>

科目: 来源:辽宁省中考真题 题型:解答题

某公司有甲、乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品,一部份存入仓库,另一部分运往外地销售。根据经验,该农产品在收获过程中两个种植基地累积总产量y(吨)与收获天数x(天)满足函数关系y=2x+3(1≤x≤10且x为整数)。该农产品在收获过程中甲、乙两基地的累积产量分别占两基地累积总产量的百分比和甲、乙两基地累积存入仓库的量分别占甲、乙两基地的累积产量的百分比如下表:
(1)请用含y的代数式分别表示在收获过程中甲、乙两个基地累积存入仓库的量;
(2)设在收获过程中甲、乙两基地累积存入仓库的该种农产品的总量为p(吨),请求出p(吨)与收获天数x(天)的函数关系式;
(3)在(2)的基础上,若仓库内原有该农产品42.6吨,为满足本地市场需求,在此收获期开始的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出的该种农产品总量m(吨)与收获天数x(天)满足函数关系m=-x2+13.2x-1.6(1≤x≤10且x为整数)。问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?

查看答案和解析>>

科目: 来源:福建省模拟题 题型:解答题

如图,正方形ABCD的边长为4cm,直角三角尺的一条直角边始终经过点D,且直角顶点E在AB边上滑动(点E不与点A、B重合),另一条直角边与BC相交于点Q。设AE的长为xcm,BQ的长为ycm。    
(1)求y与x之间的函数关系式,并直接写出自变量x的取值范围;    
(2)E点滑动到何处,BQ最长?最长是多少?    
(3)在(2)的情况下,猜想:以DO为直径的⊙O与AB的位置关系,并说明你的猜想。

查看答案和解析>>

同步练习册答案