相关习题
 0  52344  52352  52358  52362  52368  52370  52374  52380  52382  52388  52394  52398  52400  52404  52410  52412  52418  52422  52424  52428  52430  52434  52436  52438  52439  52440  52442  52443  52444  52446  52448  52452  52454  52458  52460  52464  52470  52472  52478  52482  52484  52488  52494  52500  52502  52508  52512  52514  52520  52524  52530  52538  366461 

科目: 来源:黑龙江省中考真题 题型:解答题

已知:二次函数y=x2+bx+c,其图象对称轴为直线x=1,且经过点(2,-)。
(1)求此二次函数的解析式;
(2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点E,使△EBC的面积最大,并求出最大面积。
注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=-

查看答案和解析>>

科目: 来源:黑龙江省中考真题 题型:解答题

张大爷要围成一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成。围成的花圃是如图所示的矩形ABCD,设AB边的长为x(米),矩形ABCD的面积为S(平方米),求S与x之间的函数关系式(不要求写出自变量x的取值范围);当x为何值时,S有最大值?并求出最大值。(参考公式:二次函数y=ax2+bx+c(a≠0),当x=时, y最大(小)值=

查看答案和解析>>

科目: 来源:黑龙江省中考真题 题型:解答题

如图,抛物线y=x2+bx+c经过A(-1,0),B(4,5)两点,请解答下列问题:
(1)求抛物线的解析式;
(2)若抛物线的顶点为点D,对称轴所在的直线交x轴于点E,连接AD,点F为AD的中点,求出线段EF的长。
注:抛物线y=ax2+bx+c的对称轴是x=-,顶点坐标是(-

查看答案和解析>>

科目: 来源:湖北省中考真题 题型:解答题

我市某镇的一种特产由于运输原因,长期只能在当地销售。当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=-(x-60)2+41(万元),当地政府拟在“十二·五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入x万元,可获利润Q=-(100-x)2+(100-x)+160(万元)。
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1)、(2),该方案是否具有实施价值?

查看答案和解析>>

科目: 来源:湖北省中考真题 题型:解答题

如图所示,过点F(0,1)的直线y=kx+b与抛物线y=x2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2<0)。
(1)求b的值;
(2)求x1·x2的值;
(3)分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状,并证明你的结论;
(4) 对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切,如果有,请求出这条直线m的解析式;如果没有,请说明理由。

查看答案和解析>>

科目: 来源:湖北省中考真题 题型:解答题

我市某镇的一种特产由于运输原因,长期只能在当地销售,当地政府对该特产的销售投资收益为:每投入x万元,可获得利润(万元),当地政府拟在“十二·五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每投入x万元,可获利润(万元)。
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1)、(2),该方案是否具有实施价值?

查看答案和解析>>

科目: 来源:湖北省中考真题 题型:解答题

在平面直角坐标系中,抛物线与x轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H。
(1)直接填写:a=____,b=____,顶点C的坐标为____;
(2)在轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标。

查看答案和解析>>

科目: 来源:湖北省中考真题 题型:解答题

如图1,抛物线y=ax2+bx+3经过点A(-3,0),B(-1,0)两点。
(1)求抛物线的解析式;
(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D,现将抛物线平移,保持顶点在直线OD上,若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;
(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E、F两点,问在y轴的负半轴上是否存在一点P,使△PEF的内心在y轴上,若存在,求出点P的坐标;若不存在,说明理由。

查看答案和解析>>

科目: 来源:江苏中考真题 题型:解答题

如图,已知二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B。
(1)求此二次函数关系式和点B的坐标;
(2)在x轴的正半轴上是否存在点P,使得△PAB是以AB为底的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:江苏中考真题 题型:解答题

如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立即以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止,在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧,设E、F运动的时间为t秒(t>0),正方形EFGH与△ABC重叠部分面积为S。
(1)当t=1时,正方形EFGH的边长是____;当t=3时,正方形EFGH的边长是____;
(2)当0<t≤2时,求S与t的函数关系式;
(3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?

查看答案和解析>>

同步练习册答案