相关习题
 0  52357  52365  52371  52375  52381  52383  52387  52393  52395  52401  52407  52411  52413  52417  52423  52425  52431  52435  52437  52441  52443  52447  52449  52451  52452  52453  52455  52456  52457  52459  52461  52465  52467  52471  52473  52477  52483  52485  52491  52495  52497  52501  52507  52513  52515  52521  52525  52527  52533  52537  52543  52551  366461 

科目: 来源:江苏模拟题 题型:计算题

如图,在平面直角坐标系中,将直线沿y轴向上平移1个单位,与x轴、y轴分别交于点A、B,以线段AB为边在第一象限内作等边△ABC。
(1)点A的坐标为(    ),点B的坐标为(    );
(2)求以C为顶点,经过B点的抛物线的函数关系式;
(3)在(2)中的抛物线上,是否存在点P,使△PAB的面积与△ABC的面积相等?如果存在,求出此时点P的坐标;如果不存在,请说明理由。

查看答案和解析>>

科目: 来源:江苏模拟题 题型:解答题

如图,二次函数y=-x2+px+q的图象与x轴交于A、B两点,与y轴交于点C(0,3),顶点M在第一象限,∠ABC=30°。
⑴求点A、B的坐标和二次函数的关系式;
⑵设直线与y轴的交点是D,在线段BC上任取一点E(不与B、C重合),经过A,B,E三点的圆交直线BD于点F,
①试判断△AEF的形状,并说明理由;
②设BF=m,m的取值范围是多少?(直接写出,无需过程)

查看答案和解析>>

科目: 来源:浙江省模拟题 题型:单选题

一条抛物线的开口向上,与y轴交点的纵坐标为-1,且经过(1,3),那么它的解析式可以是
[     ]
A.y=-x2+3x-1
B.y=-x2+3x+1
C.y=-x2+2x-1
D.y=x2+x+1

查看答案和解析>>

科目: 来源:河北省模拟题 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过点A(-1,0)、B(4,0),与y轴交于点C,直线y=x+2交y轴交于点D,交抛物线于E、F两点,点P为线段EF上一个动点(与E、F不重合),PQ∥y轴与抛物线交于点Q。
(1)求抛物线的解析式;
(2)当P在什么位置时,四边形PDCQ为平行四边形?求出此时点P的坐标;
(3)是否存在点P使△POB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:河北省模拟题 题型:解答题

如图,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于点B(1,m)、C(2,2)。
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;
(3)若动点P保持(2)中的运动线路,问是否存在点P,使得△POA的面积等于△PON的面积的?若存在,请求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:江苏模拟题 题型:解答题

如图,已知抛物线经过原点O与x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E。
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:①CB=CE;②D是BE的中点;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE,若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:湖北省模拟题 题型:解答题

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8),抛物线y=ax2+bx过A、C两点。
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒,过点P作PE⊥AB交AC于点E。
① 过点E作EF⊥AD于点F,交抛物线于点G,当t为何值时,线段EG最长?
② 连接EQ,在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值。

查看答案和解析>>

科目: 来源:浙江省模拟题 题型:单选题

如下图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称。AB//x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm。则右轮廓线DFE的函数解析式为
[     ]
A.
B.
C.
D.

查看答案和解析>>

科目: 来源:浙江省模拟题 题型:解答题

如图,对称轴为x=3的抛物线y=ax2+2x与轴相交于点B、O。
(1)求抛物线的解析式,并求出顶点A的坐标;
(2)连结AB,把AB所在的直线平移,使它经过原点O,得到直线l.点P是l上一动点,设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;
(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边,若存在,直接写出点Q的坐标;若不存在,说明理由。

查看答案和解析>>

科目: 来源:四川省中考真题 题型:解答题

如图1,已知直线EA与x轴、y轴分别交于点E和点A(0,2),过直线EA上的两点F、G分别作轴的垂线段,垂足分别为M(m,0)和N(n,0),其中m<0,n>0。
(1)如果m=-4,n=1,试判断△AMN的形状;
(2)如果mn=-4,(1)中有关△AMN的形状的结论还成立吗?如果成立,请证明;如果不成立,请说明理由;
(3)如图2,题目中的条件不变,如果mn=-4,并且ON=4,求经过M、A、N三点的抛物线所对应的函数关系式;
(4)在(3)的条件下,如果抛物线的对称轴与线段AN交于点P,点Q是对称轴上一动点,以点P、Q、N为顶点的三角形和以点M、A、N为顶点的三角形相似,求符合条件的点Q的坐标。

图1                                                        图2

查看答案和解析>>

同步练习册答案