相关习题
 0  52364  52372  52378  52382  52388  52390  52394  52400  52402  52408  52414  52418  52420  52424  52430  52432  52438  52442  52444  52448  52450  52454  52456  52458  52459  52460  52462  52463  52464  52466  52468  52472  52474  52478  52480  52484  52490  52492  52498  52502  52504  52508  52514  52520  52522  52528  52532  52534  52540  52544  52550  52558  366461 

科目: 来源:安徽省月考题 题型:解答题

丁丁推铅球的出手高度为1.6m,在如图所示的直角坐标系中,铅球运动路线是抛物线y=-0.1(x-k)2+2.5,求铅球的落点与丁丁的距离。

查看答案和解析>>

科目: 来源:江苏模拟题 题型:解答题

红星食品厂独家生产具有地方特色的某种食品,产量y1(万千克)与销售价格x(元/千克)(2≤x≤10)满足函数关系式y1=0.5x+11,经市场调查发现:该食品市场需求量y2(万千克)与销售价格x(元/千克)(2≤x≤10)的关系如图所示,当产量小于或等于市场需求量时,食品将被全部售出;当产量大于市场需求量时,只能售出符合市场需求量的食品,剩余食品由于保质期短将被无条件销毁。
(1)求y2与x的函数关系式;
(2)当销售价格为多少时,产量等于市场需求量?
(3)若该食品每千克的生产成本是2元,试求厂家所得利润W(万元)与销售价格x(元/千克)(2≤x≤10)之间的函数关系式。

查看答案和解析>>

科目: 来源:重庆市模拟题 题型:解答题

如图,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD把△AOB分成两个三角形,使其中一个三角形面积与四边形BPOD面积比为2:3?若存在,求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

科目: 来源:模拟题 题型:解答题

已知抛物线y=ax2+bx+c与x轴交于A、B点(A点在B点的左边),与y轴交点C的纵坐标为2,若方程的两根为x1=1,x2=-2。
(1)求此抛物线的解析式;
 (2)若抛物线的顶点为M,点P为线段AM上一动点,过P点作x轴的垂线,垂足为H点,设OH的长为t,四边形BCPH的面积为S,求S与t之间的函数关系式,并写出自变量t的取值范围;
 (3)将△BOC补成矩形,使△BOC的两个顶点B、C成为矩形的一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标。

查看答案和解析>>

科目: 来源:月考题 题型:解答题

已知,在同一直角坐标系中,反比例函数y=与二次函数y=-x2+2x+c的图象交于点A(-1,m)。
(1)求m、c的值;
(2)求二次函数图象的对称轴和顶点坐标。

查看答案和解析>>

科目: 来源:专项题 题型:解答题

如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3)。平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒)。
(1)点A的坐标是________,点C的坐标是________;
(2)当t=______秒或______秒时,MN=AC;
(3)设△OMN的面积为S,求S与t的函数关系式;
(4)探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由。

查看答案和解析>>

科目: 来源:河北省模拟题 题型:单选题

公路上行驶的汽车急刹车时的行驶路程s(米)与时间t(秒)的函数关系式为s=20t-5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车至多要滑行
[     ]
A.10米
B.20米
C.30米
D.40米

查看答案和解析>>

科目: 来源:江苏模拟题 题型:解答题

如图,Rt△ABC中,∠C=90°,BC=6,AC=8,点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ,点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H,当点E到达顶点A时,P,Q同时停止运动,设BP的长为x,△HDE的面积为y。
(1)求证:△DHQ∽△ABC;
(2)求y关于x的函数解析式并求y的最大值;
(3)当x为何值时,△HDE为等腰三角形?

查看答案和解析>>

科目: 来源:北京模拟题 题型:解答题

在平面直角坐标系中,A点坐标为(0,4),C点坐标为(10,0)。
(1)如图①,若直线AB∥OC,AB上有一动点P,当P点的坐标为_______时,有PO=PC;
(2)如图②,若直线AB与OC不平行,在过点A的直线y=-x+4上是否存在点P,使∠OPC=90°,若有这样的点P,求出它的坐标,若没有,请简要说明理由。

查看答案和解析>>

科目: 来源:河北省模拟题 题型:解答题

如图所示,在平面直角坐标系中,矩形ABCO的两边OA、OC分别在x轴和y轴的正半轴上,OA=4,OC=2。点P从点O出发,沿x轴以每秒1个单位长度的速度向点A匀速运动,当点P到达点A时停止运动。设点P运动的时间是t秒,将线段CP的中点绕点P按顺时针方向旋转90°得到点D,点D随点P的运动而运动,连结DP,DA。
(1)请用含t的代数式表示出点D的坐标;
(2)求t为何值时,△DPA的面积最大?最大面积为多少?
(3)当点P与点O重合时,CO的中点绕点P旋转后的对应点为D1,点P与点A重合时,CA中点绕P点旋转后的对应点为D2,求直线D1D2的解析式;
(4)求出随着点P的运动,点D运动路线的长度。

查看答案和解析>>

同步练习册答案