相关习题
 0  52399  52407  52413  52417  52423  52425  52429  52435  52437  52443  52449  52453  52455  52459  52465  52467  52473  52477  52479  52483  52485  52489  52491  52493  52494  52495  52497  52498  52499  52501  52503  52507  52509  52513  52515  52519  52525  52527  52533  52537  52539  52543  52549  52555  52557  52563  52567  52569  52575  52579  52585  52593  366461 

科目: 来源:专项题 题型:解答题

如图,一边靠学校院墙,其它三边用40米长的篱笆围成一个矩形花圃,设矩形的边米,面积为平方米。 
(1)求:与x之间的函数关系式,并求当2时,x的值;   
(2)设矩形的边米,如果x、y满足关系式  , 即矩形成黄金矩形,求此黄金矩形的长和宽

查看答案和解析>>

科目: 来源:同步题 题型:解答题

我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
        
(1)把上表中x、y的各组对应值作为点的坐标,在上面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?

查看答案和解析>>

科目: 来源:同步题 题型:解答题

如图,已知二次函数的图象经过A(2, 0)、B(0,-6)两点。
(1)求这个二次函数的解析式.
(2)设该二次函数的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积。
(3)根据图象,写出函数值y为负数时,自变量x的取值范围。
(4)填空:要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向下平移 _________ 个单位。

查看答案和解析>>

科目: 来源:同步题 题型:解答题

如图,在平面直角坐标系中,抛物线 经过A(0,-4)、B(,0)、 C(,0)三点,且-=5.
(1)求b、c的值;
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由。

查看答案和解析>>

科目: 来源:同步题 题型:解答题

如图所示,在梯形ABCD中,已知AB∥CD, AD⊥DB,AD=DC=CB,AB=4,以AB所在直线为x轴,过D且垂直于AB的直线为y轴,建立平面直角坐标系。
(1)求∠DAB的度数及A、D、C三点的坐标;
(2)求过A、D、C三点的抛物线的解析式及其对称轴L;
(3)若P是抛物线的对称轴L上的点,那么使△PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)

查看答案和解析>>

科目: 来源:同步题 题型:解答题

将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD。
(1)填空:如图1,AC=______,BD=______;四边形ABCD是______梯形;
(2)请写出图1中所有的相似三角形(不含全等三角形);
(3)如图2,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图2的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值范围。

查看答案和解析>>

科目: 来源:同步题 题型:解答题

一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m。
(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;
(2)求支柱EF的长度;
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由。

查看答案和解析>>

科目: 来源:同步题 题型:解答题

如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4。
(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;
(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(),过P点作ED的平行线交AD于点M,过点M作AE的平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,S有最大值?最大值是多少?
(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标。

查看答案和解析>>

科目: 来源:模拟题 题型:解答题

已知抛物线y=x2+px+q与x轴交于不同两点A(x1,0),B(x2,0),(B在A的右边)交y轴于点C,且满足
(1)求证:4p+5q=0;
(2)问是否存在一个圆O′,经过A、B两点,且与y轴相切于C点,若存在试确定此时抛物线的解析式及圆心O′的坐标,若不存在,请说明理由.

查看答案和解析>>

科目: 来源:同步题 题型:解答题

红星公司生产的某种时令商品每件成本为20 元,经过市场调研发现,这种商品在未来40天内的日销售量(件)与时间(天)的关系如下表:
未来40天内,前20天每天的价格y1(元/件)与t时间(天)的函数关系式为:y1=1/4t+25(1≤t≤20且t为整数);后20天每天的价格y2(原/件)与时间t(天)的函数关系式为:y2= -1/2t+40(21≤t≤40且t为整数)。下面我们来研究这种商品的有关问题。
(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数 、反比例函数的知识确定一个满足这些数据之间的函数关系式;
(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a 元利润(a<4)给希望工程,公司通过销售记录发现,前20 天中,每天扣除捐赠后的日销售利润随时间t的增大而增大, 求a的取值范围。

查看答案和解析>>

同步练习册答案