相关习题
 0  52405  52413  52419  52423  52429  52431  52435  52441  52443  52449  52455  52459  52461  52465  52471  52473  52479  52483  52485  52489  52491  52495  52497  52499  52500  52501  52503  52504  52505  52507  52509  52513  52515  52519  52521  52525  52531  52533  52539  52543  52545  52549  52555  52561  52563  52569  52573  52575  52581  52585  52591  52599  366461 

科目: 来源:江苏期中题 题型:解答题

抛物线y=ax2+2x+3(a<0)交X轴于A,B两点,交Y轴于点C,顶点为D,而且经过点(2,3)。
(1)写出抛物线的解析式及C、D两点的坐标;
(2)连结BC,以BC为边向右作正方形BCEF,求E、F两点的坐标;
(3)若将此抛物线沿其对称轴向上平移,试判断平移后的抛物线是否会同时经过正方形BCEF的两个顶点E、F;若能,写出平移后的抛物线解析式,若不能,请说明理由。

查看答案和解析>>

科目: 来源:江苏期中题 题型:解答题

已知抛物线经过点A(5,0)、B(6,-6)和原点.
(1)求抛物线的函数关系式;
(2)若过点B的直线y=kx+b'与抛物线相交于点C(2,m),请求出△OBC的面积S的值.
(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E. 直线PF与直线DC及两坐标轴围成矩形OFED(如图),是否存在点P,使得△OCD与△CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:江苏期中题 题型:解答题

如图,以矩形OABC的两边OA和OC所在直线为x轴、y轴建立平面直角坐标系,A点的坐标为(3,0),C点的坐标为(0,4)。将矩形OABC绕O点逆时针旋转,使B点落在y轴的正半轴上,旋转后的矩形为OA1B1C1,BC,A1B1相交于点M。
(1)求点B1的坐标与线段B1C的长;
(2)将图a中的矩形OA1B1C1沿y轴向上平移,如图b,矩形PA2B2C2是平移过程中的某一位置,BC、A2B2相交 于点M1,点P运动到C点停止。设点P运动的距离x,矩形PA2B2C2与原矩形OABC重叠部分的面积为y,求y关于x的函数关系式,并写出x的取值范围;
(3)如图c,当点P运动到点C时,平移后的矩形为PA3B3C3,请你思考如何通过图形变换使矩形PA3B3C3与原矩形OABC重合,请简述你的做法。

查看答案和解析>>

科目: 来源:期中题 题型:解答题

已知抛物线y=x2+(2n-1)x+n2-1(n为常数)。
(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;
(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C。
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标;如果不存在,请说明理由。

查看答案和解析>>

科目: 来源:安徽省期中题 题型:解答题

如图,在平面直角坐标系中,两个一次函数y=x,y=-2x+12的图象相交于点A,动点E从O点出发,沿OA方向以每秒1个单位的速度运动,作EF∥y轴与直线BC交于点F,以EF为一边向x轴负方向作正方形EFMN,设正方形EFMN与△AOC的重叠部分的面积为S.
(1)求点A的坐标;
(2)求过A、B、O三点的抛物线的顶点P的坐标;
(3)当点E在线段OA上运动时,求出S与运动时间t(秒)的函数表达式;
(4)在(3)的条件下,t为何值时,S有最大值,最大值是多少?此时(2)中的抛物线的顶点P是否在直线EF上,请说明理由.

查看答案和解析>>

科目: 来源:同步题 题型:单选题

设y=y1+y2,且y1与x2成正比例,y2成反比例,则y与x的函数关系是
[     ]
A.正比例函数
B.一次函数
C.二次函数
D.反比例函数

查看答案和解析>>

科目: 来源:专项题 题型:解答题

已知:在△ABC中,,P为AB上一动点(P不与A、B重合),过点P作PE//BC交AC于E,连结BE,设AP=x,△BPE的面积为y,求y与x之间的函数关系,并求自变量x的取值范围。

查看答案和解析>>

科目: 来源:模拟题 题型:解答题

有一座大桥是靠抛物线型的拱形支撑的,它的桥面处于拱形中部(金华市区的双龙大桥就是这种模型)已知桥面在拱形之间的宽度为40m,桥面离拱形支撑的最高点O的距离为10m,且在正常水位时水面宽度AB为48m
(1)建立如图所示的直角坐标系,求此抛物线的解析式;
(2)现有一辆载有救援物质的货车正以40的速度必需经过此桥匀速开往乙地,当货车行驶到甲地时接到紧急通知:前方连降暴雨,造成水位以每小时0.3m的速度持续上涨(接到通知时水位已经比正常水位高出2m了,当水位到达桥面的高度时,禁止车辆通行),已知甲地距离此桥360km(桥长忽略不计),请问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度不得低于多少

查看答案和解析>>

科目: 来源:模拟题 题型:解答题

如图,矩形是由矩形(边OA在x轴正半轴上,边OC在y轴正半轴上)绕点B逆时针旋转得到的,点在x轴的正半轴上,B点的坐标为 (1,3),与AB交于D点。
(1)求D点的坐标;
(2)如果二次函数)的图象经过点O、两点且图象顶点M的纵坐标为-1,求这个二次函数的解析式;
(3)若将直线OC绕点O旋转度()后与抛物线的另一个交点为P,则以O、、B、P为顶点的四边形能否是平行四边形?若能,求出的值;若不能,请说明理由。

查看答案和解析>>

科目: 来源:江苏模拟题 题型:解答题

矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D。
(1)求点D的坐标;
(2)若抛物线经过D、A两点,试确定此抛物线的函数表达式;
(3)若P为x轴上方(2)中抛物线上一点,求△POA面积的最大值;
(4)设(2)中抛物线的对称轴与直线OD交于点M,点Q为对称轴上一动点,以Q、O、M为顶点的三角形与△OCD相似,求符合条件的Q点的坐标。

查看答案和解析>>

同步练习册答案