相关习题
 0  52413  52421  52427  52431  52437  52439  52443  52449  52451  52457  52463  52467  52469  52473  52479  52481  52487  52491  52493  52497  52499  52503  52505  52507  52508  52509  52511  52512  52513  52515  52517  52521  52523  52527  52529  52533  52539  52541  52547  52551  52553  52557  52563  52569  52571  52577  52581  52583  52589  52593  52599  52607  366461 

科目: 来源:重庆市期末题 题型:解答题

已知抛物线过点(-2,4),与y轴的交点为B(0,1)。
(1)求抛物线的解析式及其顶点A的坐标;
(2)在抛物线上是否存在一点C,使∠BAC=90?若不存在说明理由;若存在,求出点C的坐标;
(3)P、Q为抛物线上的两点,且横坐标分别为4和6,在x轴、y轴上分别有两个动点M、N,当PM +MN +NQ最小时,求出M、N两点的坐标。

查看答案和解析>>

科目: 来源:同步题 题型:解答题

拱桥的形状是抛物线,其函数关系式为y= -x2,当水面离桥顶的高度为m时,水面的宽度为多少米?

查看答案和解析>>

科目: 来源:北京期末题 题型:解答题

二次函数的部分对应值如下表:
(1)二次函数图象所对应的顶点坐标为(      );
(2)当x=4时,y=(      );
(3)由二次函数的图象可知,当函数值y<0时,x的取值范围是(       )。

查看答案和解析>>

科目: 来源:北京期末题 题型:解答题

如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,-4),且过点B(-3,0)
(1)写出抛物线C1与x轴的另一个交点M的坐标;
(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;
(3)写出阴影部分的面积S。

查看答案和解析>>

科目: 来源:北京期末题 题型:解答题

如图,抛物线交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的横坐标是-3,点B的横坐标是1。
(1) 求m、n的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线 PC的位置关系,并说明理由。
        (参考数:)

查看答案和解析>>

科目: 来源:重庆市期末题 题型:解答题

如图,已知二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M。
(1)求二次函数的解析式;
(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;
(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形;如果存在,求出点N的坐标;如果不存在,请说明理由。

查看答案和解析>>

科目: 来源:广西自治区中考真题 题型:解答题

已知抛物线y=x2+bx+c的图象过A(0,1)、B(-1,0)两点,直线l:x=-2与抛物线相交于点C,抛物线上一点M从B点出发,沿抛物线向左侧运动,直线MA分别交对称轴和直线l于D、P两点,设直线PA为y=kx+m,用S表示以P、B、C、D为顶点的多边形的面积。
(1)求抛物线的解析式,并用k表示P、D两点的坐标;
(2)当0<k≤1时,求S与k之间的关系式;
(3)当k<0时,求S与k之间的关系式,是否存在k的值,使得以P、B、C、D为顶点的多边形为平行四边形,若存在,求此时的值.若不存在,请说明理由;
(4)若规定k=0时,y=m是一条过点(0,m)且平行于x轴的直线.当k≤1时,请在下面给出的直角坐标系中画出S与k之间的函数图象,求S的最小值,并说明此时对应的以P、B、C、D为顶点的多边形的形状。

查看答案和解析>>

科目: 来源:福建省模拟题 题型:解答题

宏达纺织品有限公司准备投资开发A、B两种新产品,通过市场调研发现:如果单独投资A种产品,则所获利润yA(万元)与投资金额x(万元)之间满足正比例函数关系:yA=kx;如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间满足二次函数关系:yB=ax2+bx.根据公司信息部的报告,yA,yB(万元)与投资金额x(万元)的部分对应值(如下表)
x
1
5
yA
0.6
3
yB
2.8
10
(1)求yA,yB的解析式;
(2)如果公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为w(万元),试写出w与某种产品的投资金额x之间的函数关系式;
(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?

查看答案和解析>>

科目: 来源:竞赛题 题型:填空题

抛物线y=n(n+1)x2-(3n+1)x+3与直线y=-nx+2的两个交点的横坐标分别是x1、x2,记
,则代数式的值为(        )。

查看答案和解析>>

科目: 来源:福建省模拟题 题型:解答题

对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),当|a1|=|a2| 时,我们称这两个二次函数的图象为全等抛物线.
现有△ABM,A(- l,0),B(1,0).记过三点的二次函数抛物线为“C□□□”(“□□□”中填写相应三个点的字母)
 (1)若已知M(0,1),△ABM≌△ABN.请通过计算判断CABM与CABN是否为全等抛物线;
(2)在图中,以A、B、M三点为顶点,画出平行四边形.
①若已知 M(0, n),求抛物线CABM的解析式,并直接写出所有过平行四边形中三个顶点且能与CABM全等的抛物线解析式.
②若已知M(m,n),当m,n满足什么条件时,存在抛物线CABM?根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与CABM全等的抛物线,若存在,请列出所有满足条件的抛物线“C□□□”;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案