相关习题
 0  53023  53031  53037  53041  53047  53049  53053  53059  53061  53067  53073  53077  53079  53083  53089  53091  53097  53101  53103  53107  53109  53113  53115  53117  53118  53119  53121  53122  53123  53125  53127  53131  53133  53137  53139  53143  53149  53151  53157  53161  53163  53167  53173  53179  53181  53187  53191  53193  53199  53203  53209  53217  366461 

科目: 来源:浙江省竞赛题 题型:解答题

王明、李宏和赵亮参加同样系列的测试。在每一项测试中,三人的成绩均为两两相异的正整数x,y,z。每人所得的成绩总和如下:王明20分,李宏l0分,赵亮9分。若李宏在代数测试中名列第一,那么几何测试中谁列第二位?

查看答案和解析>>

科目: 来源:湖南省竞赛题 题型:填空题

A、B、C、D、E、F六足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E五队已分别比赛了5、4、3、2、1场球,则还没与B队比赛的球队是(    ).

查看答案和解析>>

科目: 来源:江苏月考题 题型:解答题

喜爱数学的小明一天在家里发现他妈妈刚从超市买回来的2块超能皂,小明仔细看了超能皂外包装上的尺寸说明,每块的尺寸均是:长(a)、宽(b)、高(c)分别是16cm,6cm,3cm。他想起老师讲过关于物体外包装用料最省的问题,就想研究这两块超能皂如何摆放,它的外包装用料才最省?实践与操作:小明动手摆放了这2块超能皂摆放情况,发现无论怎样放置,体积都不会发生变化,但是由于摆放位置的不同,它们的外包装用料不同,经过实际操作发现这两块超能皂有3种不同的摆放方式,如图所示:①请你帮助小明指出图1,图2,图3这3种不同摆放方式的长、宽、高,并计算其外包装用料,填写在下表中(包装接头用料忽略不计)?探究与思考:如果现在有4块这样的超能皂,如何摆放使它的外包装用料最省呢?说说你的理由,

查看答案和解析>>

科目: 来源:不详 题型:解答题

将凸五边形ABCDE的5条边和5条对角线染色,且满足任意有公共顶点的两条线段不同色,求颜色数目的最小值.

查看答案和解析>>

科目: 来源:不详 题型:解答题

阅读并解答
看下面的问题:
从甲地到乙地,可以乘火车,也可以乘汽车.一天中,火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?
因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以共有3+2=5种不同的走法.
一般地,有如下原理:
分类计数原理:完成一件事,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法…在第n类办法中有mn种不同的方法.那么完成这件事共有N=m1+m2+…+mn种不同的方法.
再看下面的问题:
从甲地到乙地,要从甲地先乘火车到丙地,再于次日从丙地乘汽车到乙地.一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地共有多少种不同的走法?
这个问题与前一问题不同.在前一问题中,采用乘火车或乘汽车中的任何一种方式,都可以从甲地到乙地.而在这个问题中,必须经过先乘火车、后乘汽车两个步骤,才能从甲地到达乙地.
这里,因为乘火车有3种走法,乘汽车有2种走法,所以乘一次火车再接乘一次汽车从甲地到乙地,共有  3×2=6种不同的走法.
一般地,有如下原理:
分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法…做第n步有mn种不同的方法.那么完成这件事共有
N=m1×m2×…×mn种不同的方法.
例:书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.
(1)从书架上任取1本书,有多少种不同的取法?
(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?
(1)从书架上任取1本书,有3类办法:第1类办法是从第1层取1本计算机书,有4种方法;第2类办法是从第2层取1本文艺书,有3种方法;第3类办法是从第3层取1本体育书,有2种方法.根据分类计数原理,不同取法的种数是
N=m1+m2+m3=4+3+2=9
答:从书架上任取1本书,有9种不同的取法.
(2)从书架的第1、2、3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本文艺书,有3种方法;第3步从第3层取1本体育书,有2种取法.根据分步计数原理,从书架的第1、2、3层各取1本书,不同取法的种数是N=m1×m2×m3=4×3×2=24
答:从书架的第1、2、3层各取1本书,有24种不同的取法.
完成下列填空:
(1)从5位同学中产生1名组长,1名副组长有______种不同的选法.
(2)如图,一条电路在从A处到B处接通时,可以有______条不同的路线.
(3)用数字0、1、2、3、4、5组成______个没有重复数字的六位奇数.
(4)一种汽车牌照由2个英文字母后接4个数字组成,且2个英文字母不能相同,则不同牌照号码
精英家教网
的个数是______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

(1)用1×1,2×2,3×3三种型号的正方形地板砖铺设23×23的正方形地面,请你设计一种辅设方案,使得1×1的地板砖只用一块.
(2)请你证明:只用2×2,3×3两种型号的地板砖,无论如何铺设都不能铺满23×23的正方形地面而不留空隙.

查看答案和解析>>

科目: 来源:不详 题型:单选题

某旅游团92人在快餐店就餐,该店备有9种莱,每份单价分别为1、2、3、4、5、6、7、8、9(元).旅游团领队交代:每人可选不同的菜,但金额都正好是10元,且每一种菜最多只能买一份.这样,该团成员中,购菜品种完全相同的至少有(  )
A.9人B.10人C.11人D.12人

查看答案和解析>>

科目: 来源:不详 题型:填空题

公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管显示,如图所示.由于其中三支应该亮的荧光管不亮了,某公交线路号显示成了“351”路,则该公交线路号可能
精英家教网
有______种.

查看答案和解析>>

科目: 来源:不详 题型:单选题

如图,全部矩形(长方形)的总数为(  )
A.18个B.30个C.36个D.49个
精英家教网

查看答案和解析>>

科目: 来源:不详 题型:填空题

我市某区在中心广场要建造一个花圃,花圃分为4个部分(如图),现要求同一个区域内种同一种颜色的花,有五种颜色的花,要求相邻部分不能栽种相同颜色的花,则不同的栽种方法共有______种.
精英家教网

查看答案和解析>>

同步练习册答案