相关习题
 0  65049  65057  65063  65067  65073  65075  65079  65085  65087  65093  65099  65103  65105  65109  65115  65117  65123  65127  65129  65133  65135  65139  65141  65143  65144  65145  65147  65148  65149  65151  65153  65157  65159  65163  65165  65169  65175  65177  65183  65187  65189  65193  65199  65205  65207  65213  65217  65219  65225  65229  65235  65243  366461 

科目: 来源: 题型:

2、已知一组数据:2,2,3,x,5,5,6的众数是2,则x是(  )

查看答案和解析>>

科目: 来源: 题型:

1、如图所示的四个立体图形中,左视图是圆的个数是(  )

查看答案和解析>>

科目: 来源: 题型:

如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4).动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也精英家教网以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为t秒.
(1)请用含t的代数式分别表示出点C与点P的坐标;
(2)以点C为圆心、
12
t个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B的左侧),连接PA、PB.
①当⊙C与射线DE有公共点时,求t的取值范围;
②当△PAB为等腰三角形时,求t的值.

查看答案和解析>>

科目: 来源: 题型:

精英家教网已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(2,0),C(0,-2),直线x=m(m>2)与x轴交于点D.
(1)求二次函数的解析式;
(2)在直线x=m(m>2)上有一点E(点E在第四象限),使得E、D、B为顶点的三角形与以A、O、C为顶点的三角形相似,求E点坐标(用含m的代数式表示);
(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(0A<OB)是方程x2-精英家教网18x+72=0的两个根,点C是线段AB的中点,点D在线段OC上,OD=2CD.
(1)求点C的坐标;
(2)求直线AD的解析式;
(3)P是直线AD上的点,在平面内是否存在点Q,使以0、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

如图,四边形OABC是等腰梯形,OA∥BC,A的坐标(4,0),B的坐标(3,2),点M从O点以每秒3个单位的速度向终点A运动;同时点N从B点出发以每秒1个单位的速精英家教网度向终点C运动(M到达点A后停止,点N继续运动到C点停止),过点N作NP⊥OA于P点,连接AC交NP于Q,连接MQ,如动点N运动时间为t秒.
(1)求直线AC的解析式;
(2)当t取何值时?△AMQ的面积最大,并求此时△AMQ面积的最大值;
(3)是否存在t的值,使△PQM与△PQA相似?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上精英家教网弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式;
(2)足球第一次落地点C距守门员多少米?(取4
3
=7)
(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取2
6
=5)

查看答案和解析>>

科目: 来源: 题型:

已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足
PQ
PC
=
AD
AB
(如图1所示).
(1)当AD=2,且点Q与点B重合时(如图2所示),求线段PC的长;
(2)在图1中,连接AP.当AD=
3
2
,且点Q在线段AB上时,设点B、Q之间的距离为x,
S△APQ
S△PBC
=y
,其中S△APQ表示△APQ的面积,S△PBC表示△PBC的面积,求y关于x的函数解析式,并写出函数定义域;
(3)当AD<AB,且点Q在线段AB的延长线上时(如图3所示),求∠QPC的大小.
精英家教网

查看答案和解析>>

科目: 来源: 题型:

在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),精英家教网直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD.
(1)求b的值和点D的坐标;
(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;
(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.

查看答案和解析>>

科目: 来源: 题型:

如图,线段AB、DC分别表示甲、乙两建筑物的高,AB⊥BC,DC⊥BC,从B点测得D点的仰角α为60°精英家教网从A点测得D点的仰角β为30°,已知甲建筑物高AB=36米.
(1)求乙建筑物的高DC;
(2)求甲、乙两建筑物之间的距离BC(结果精确到0.01米).
(参考数据:
2
≈1.414,
3
≈1.732)

查看答案和解析>>

同步练习册答案