相关习题
 0  71415  71423  71429  71433  71439  71441  71445  71451  71453  71459  71465  71469  71471  71475  71481  71483  71489  71493  71495  71499  71501  71505  71507  71509  71510  71511  71513  71514  71515  71517  71519  71523  71525  71529  71531  71535  71541  71543  71549  71553  71555  71559  71565  71571  71573  71579  71583  71585  71591  71595  71601  71609  366461 

科目: 来源: 题型:

精英家教网如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

精英家教网已知:函数y=ax2+x+1的图象与x轴只有一个公共点.
(1)求这个函数关系式;
(2)如图所示,设二次函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;
(3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上?若在抛物线上,求出M点的坐标;若不在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

精英家教网已知二次函数的图象与x轴有且只有一个交点A(-2,0),与y轴的交点为B(0,4),且其对称轴与y轴平行.
(1)求该二次函数的解析式,并在所给出坐标系中画出这个二次函数的大致图象;
(2)在该二次函数位于A、B两点之间的图象上取上点M,过点M分别作x轴、y轴的垂线段,垂足分别为点C、D.求矩形MCOD的周长的最小值和此时点M的坐标.

查看答案和解析>>

科目: 来源: 题型:

已知抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n),其中m、n是方程x2-6x+5=0的两个实数根,且m<n.
(1)求抛物线的解析式;
(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,求C、D点的坐标和△BCD的面积;
(3)P是线段OC上一点,过点P作PH⊥x轴,交抛物线于点H,若直线BC把△PCH分成面积精英家教网相等的两部分,求P点的坐标.

查看答案和解析>>

科目: 来源: 题型:

如图所示,在平面直角坐标系中,点B的坐标为(-3,-4),线段OB绕原点逆时针旋转后精英家教网与x轴的正半轴重合,点B的对应点为点A.
(1)直接写出点A的坐标,并求出经过A,O,B三点的抛物线的解析式;
(2)在抛物线的对称轴上是否存在点C,使BC+OC的值最小?若存在,求出点C的坐标,若不存在,请说明理由;
(3)如果点P是抛物线上的一个动点,且在x轴的上方,当点P运动到什么位置时,△PAB的面积最大?求出此时点P的坐标和△PAB的最大面积.

查看答案和解析>>

科目: 来源: 题型:

如图,在直角坐标平面内,O为坐标原点,A点的坐标为(1,0),B点在x轴上且在点A的右侧,AB=OA,过点A和B作x轴的垂线分别交二次函数y=x2图象于点C和D,直线OC交BD于M,直线CD交y轴于点H.记C、D的横坐标分精英家教网别为xc,xD,于点H的纵坐标yH
(1)证明:①S△CMD:S梯形ABMC=2:3;②xc•xD=-yH
(2)若将上述A点坐标(1,0)改为A点坐标(t,0)(t>0),其他条件不变,结论S△CMD:S梯形ABMC=2:3是否仍成立?请说明理由.
(3)若A的坐标(t,0)(t>0),又将条件y=x2改为y=ax2(a>0),其他条件不变,那么xc,xD和yH又有怎样的数量关系?写出关系式,并证明.

查看答案和解析>>

科目: 来源: 题型:

如图,一面利用墙,用篱笆围成一个外形为矩形的花圃,花圃的面积为S平方米,平行于院墙的一边长为x米.
(1)若院墙可利用最大长度为10米,篱笆长为24米,花圃中间用一道篱笆间隔成两个小矩形,求S与x之间函数关系.
精英家教网
(2)在(1)的条件下,围成的花圃面积为45平方米时,求AB的长.能否围成面积比45平方米更大的花圃?如果能,应该怎么围?如果不能请说明理由.
(3)当院墙可利用最大长度为40米,篱笆长为77米,中间建n道篱笆间隔成小矩形,当这些小矩形为正方形,且x为正整数时,请直接写出一组满足条件的x,n的值.
精英家教网

查看答案和解析>>

科目: 来源: 题型:

工程师有一块长AD为12分米,宽AB为8分米的铁板,截去了长AE=2分米,AF=4分米的直角三角形,在余下精英家教网的五边形中结的矩形MGCH,M必须在线段EF上.
(1)若截得矩形MGCH的面积为70平方分米,求矩形MGCH的长和宽.
(2)当EM为多少时,矩形MGCH的面积最大?并求此时矩形的周长.

查看答案和解析>>

科目: 来源: 题型:

5、如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x,面积为y.
(1)求y与x的函数关系式,并求自变量x的取值范围;
(2)生物园的面积能否达到210平方米?说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知在等腰△ABC中,其周长为30cm,底边为y(cm),腰长为x(cm),(1)求y与x之间的函数关系式;(2)x的值能等于6cm吗?为什么?

查看答案和解析>>

同步练习册答案