相关习题
 0  76478  76486  76492  76496  76502  76504  76508  76514  76516  76522  76528  76532  76534  76538  76544  76546  76552  76556  76558  76562  76564  76568  76570  76572  76573  76574  76576  76577  76578  76580  76582  76586  76588  76592  76594  76598  76604  76606  76612  76616  76618  76622  76628  76634  76636  76642  76646  76648  76654  76658  76664  76672  366461 

科目: 来源: 题型:

如图,在平面直角坐标系中,ABCD为等腰梯形,AD∥BC,BC=2AD,梯形ABCD的面积S=18,中位线精英家教网长为3,点B的坐标为(1,0).
(1)求过A、B、C、D四点的抛物线的解析式;
(2)若P是抛物线上的任意一点,试比较△PBC的面积与梯形ABCD面积S的大小,并求出P点的坐标,不能求出时,请求出P点纵坐标的取值范围.

查看答案和解析>>

科目: 来源: 题型:

精英家教网已知抛物线y=
1
2
x2-x+2.
(1)确定此抛物线的对称轴方程和顶点坐标;
(2)如图,若直线l:y=kx(k>0)分别与抛物线交于两个不同的点A、B,与直线y=-x+4相交于点P,试证
OP
OA
+
OP
OB
=2;
(3)在(2)中,是否存在k值,使A、B两点的纵坐标之和等于4?如果存在,求出k值;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知直线y=kx-4(k>0)与x轴和y轴分别交于A、C两点;开口向上的抛物线y=ax2+bx+c过A、C两点,且与x轴交于另一点B.
(1)如果A、B两点到原点O的距离AO、BO满足AO=3BO,点B到直线AC的距离等于
165
,求这条直线和抛物线的解析式.
(2)问是否存在这样的抛物线,使得tan∠ACB=2,且△ABC的外接圆截y轴所得的弦长等于5?若存在,求出这样的抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

已知抛物线y=
1
2
x2-
3
2
mx-2m
交x轴于A(x1,0)、B(x2,0),交y轴于C点,且x1<0<x2,(AO+OB)2=12CO+1.
(1)求抛物线的解析式;
(2)在x轴的下方是否存在着抛物线上的点P,使∠APB为锐角?若存在,求出P点的横坐标的范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

精英家教网已知经过(-3,5),(-1,-3),(0,-4)三点的抛物线与x轴交于A、B两点(A点在B点的左边),顶点为C.
(1)求这条抛物线的解析式;
(2)求点A、B的坐标及直线CB的解析式;
(3)设点P(a,0)为x轴上一动点,那么以P点为圆心,2为半径的⊙P与直线CB有哪几种位置关系?并求出相应位置关系时a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

已知二次函数y=x2-(2m+1)x+m2的图象与x轴交于点A(xl,0)、B(x2,0),其中精英家教网xl<x2,且
1
x1
+
1
x2
=
5
4

(1)求二次函数的解析式;
(2)若一次函数y=x+n的图象过点B,求其解析式;
(3)在给出的坐标系中画出所求出的一次函数和二次函数的图象;
(4)对任意实数a、b,若a≥b,记max{a,b}=a,例如:max{1,2}=2,max{3,3}=3,请你观察第(3)题中的两个图象,如果对于任意一个实数x,它对应的一次函数的值为y1,对应的二次函数的值为y2,求出max{y1,y2}中的最小值及取得最小值时x的值.

查看答案和解析>>

科目: 来源: 题型:

已知:如图,在平面直角坐标系中,过点A(0,2)的直线AB与以坐标原点为圆心,
3
为半精英家教网径的圆相切于点C,且与x轴的负半轴相交于点B.
(1)求∠BAO的度数;
(2)求直线AB的解析式;
(3)若一抛物线的顶点在直线AB上,且抛物线的顶点和它与x轴的两个交点构成斜边长为2的直角三角形,求此抛物线的解析式.

查看答案和解析>>

科目: 来源: 题型:

精英家教网已知:如图,在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c.点E是AC边上的一个动点(点E与点A、C不重合),点F是AB边上的一个动点(点F与点A、B不重合),连接EF.
(1)当a、b满足a2+b2-16a-12b+100=0,且c是不等式组
x+2
4
≤x+6
2x+2
3
>x-3
的最大整数解时,试说明△ABC的形状;
(2)在(1)的条件得到满足的△ABC中,若EF平分△ABC的周长,设AE=x,y表示△AEF的面积,试写出y关于x的函数关系式;
(3)在(1)的条件得到满足的△ABC中,是否存在线段EF,将△ABC的周长和面积同时平分?若存在,则求出AE的长;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

巳知:如图,在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的半圆交AB于点E,精英家教网与AC切于点D.当AD2+AE2=5时,AD、AE(AD>AE)是关于x的方程x2-(m-1)x+m-2=0(m≠0)的两个根.
(1)求实数m的值;
(2)证明:CD的长度是无理方程2
x-1
-x=1的一个根;
(3)以B点为坐标原点,分别以AB、BC所在直线为x轴、y轴建立平面直角坐标系,求过A、B、D三点且对称轴平行于y轴的抛物线的解析式.

查看答案和解析>>

科目: 来源: 题型:

已知以x为自变量的二次函数y=x2-(2m-2)x+(m2-m-2)的图象经过原点O,并与x轴相交于点M,且M在原点的右边.
(1)求这个二次函数的解析式;
(2)一次函数y=kx+b的图象经过点M,与这个二次函数的图象交于点N,且△OMN的面积等于3,求这个一次函数的解析式.

查看答案和解析>>

同步练习册答案