精英家教网 > 高中数学 > 题目详情
已知f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)在(-4,5)上的单调区间.
(Ⅰ)由奇函数的定义,应有f(-x)=-f(x),x∈R
即-ax3-cx+d=-ax3-cx-d∴d=0
因此,f(x)=ax3+cx  f'(x)=3ax2+c
由条件f(1)=-2为f(x)的极值,必有f'(1)=0,故
a+c=-2
3a+c=0

解得a=1,c=-3因此,f(x)=x3-3x,
(II)f'(x)=3x2-3=3(x+1)(x-1)
当x∈(-4,-1)时,f'(x)>0,故f(x)在单调区间(-4,-1)上是增函数
当x∈(-1,1)时,f'(x)<0,故f(x)在单调区间(-1,1)上是减函数
当x∈(1,5)时,f'(x)>0,故f(x)在单调区间(1,5)上是增函数
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx+2,且f(-5)=3,则f(5)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3-bx+1且f(-4)=7,则f(4)=
-5
-5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx+1,f(-2)=2,则f(2)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bsinx+6,a、b∈R,若f(3)=10,则f(-3)=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F(x)=ax3+bx5+cx3+dx-6,F(-2)=10,则F(2)的值为(  )
A、-22B、10C、-10D、22

查看答案和解析>>

同步练习册答案