精英家教网 > 高中数学 > 题目详情

答:.

解:(Ⅰ)因为所以

      

       可知向量的夹角为

       因此与EF所成角的大小为

       (II)在正方体中,因为平面,所以是平面的法向量     因为

      

       所以 ,由,所以可得A1F与平面B1EB所成角的余弦值为

       (III)因为平面,所以是平面的法向量,因为

      

       所以,所以二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为
2
3
,乙队中3人答对的概率分别为
2
3
2
3
1
2
,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.
(Ⅰ)求随机变量ξ的分布列和数学期望;
(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.
(1)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽”卡的概率是
518
,求抽奖者获奖的概率;
(2)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及Eξ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区教研部门要对高三期中数学练习进行调研,考察试卷中某道填空题的得分情况.已知该题有两空,第一空答对得3分,答错或不答得0分;第二空答对得2分,答错或不答得0分.第一空答对与否与第二空答对与否是相互独立的.从所有试卷中随机抽取1000份试卷,其中该题的得分组成容量为1000的样本,统计结果如下表:
第一空得分情况 第二空得分情况
得分 0 3 得分 0 2
人数  198  802 人数  698  302
(Ⅰ)求样本试卷中该题的平均分,并据此估计这个地区高三学生该题的平均分;
(Ⅱ)这个地区的一名高三学生因故未参加考试,如果这名学生参加考试,以样本中各种得分情况的频率(精确到0.1)作为该同学相应的各种得分情况的概率.试求该同学这道题第一空得分不低于第二空得分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某次有奖竞猜活动中,主持人准备了AB两个相互独立的问题,并且宣布:观众答对问题A可获奖金a元,答对问题B可获奖金2a元;先答哪个题由观众自由选择;只有第1个问题答对,才能再答第2个问题,否则中止答题若你被选为幸运观众,且假设你答对问题AB的概率分别为
1
2
 ,
1
3
你觉得应先回答哪个问题才能使你获得奖金的期望较大?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙三位同学独立完成6道数学自测题,他们答及格的概率依次为
4
5
3
5
7
10
.求:
(1)三人中有且只有2人答及格的概率;
(2)三人中至少有一人不及格的概率.

查看答案和解析>>

同步练习册答案