精英家教网 > 高中数学 > 题目详情

已知三次函数f(x)=x3+ax2-6x+b,a、b为实数,f(0)=1,曲线y=f(x)在点(1,f(1))处切线的斜率为-6.

(1)求函数f(x)的解析式;

(2)求函数f(x)在(-2,2)上的最大值

答案:
解析:

  解:(1)

  由导数的几何意义,=-6∴

  ∵=1∴

  ∴ 6分

  (2)

  令=0得

  当(-2,-1)时,>0,递增;

  当(-1,2)时,递减.

  ∴在区间(-2,2)内,函数的最大值为 12分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三次函数f(x)=
a
3
x3+
b
2
x2+cx+d(2a<b)
在R上单调递增,则
a+b+c
b-2a
的最小值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=
1
3
x3+
b
2
x2+x
在R上有极值,则实数b的范围为
(-∞,-2)∪(2,+∞)
(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=
a
3
x3+
b
2
x2+cx+d(a<b)
在R上单调递增,则
a+b+c
b-a
的最小值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知三次函数f(x)=
a
3
x3+
b
2
x2+cx+d(a<b)
在R上单调递增,求
a+b+c
b-a
的最小值.
(2)设f(x)=x2+bx+c(b,c∈R).若|x|≥2时,f(x)≥0,且f(x)在区间(2,3]上的最大值为1,求b2+c2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=
a
3
x3+bx2+cx+d(a<b)
在R上单调递增,则
a+b+c
b-a
的最小值为
 

查看答案和解析>>

同步练习册答案