精英家教网 > 高中数学 > 题目详情
5.已知f(x)=4x5+3x4+2x3-x2-x-$\frac{1}{2}$,用秦九韶算法求f(-2)等于(  )
A.-$\frac{197}{2}$B.$\frac{197}{2}$C.$\frac{183}{2}$D.-$\frac{183}{2}$

分析 利用秦九韶算法计算多项式的值,先将多项式转化为((((4x+3)x+2)x-1)x-1)x-$\frac{1}{2}$的形式,然后逐步计算v0至v5的值,即可得到答案.

解答 解:根据秦九韶算法,把多项式改写成如下形式f(x)=4x5+3x4+2x3-x2-x-$\frac{1}{2}$=((((4x+3)x+2)x-1)x-1)x-$\frac{1}{2}$
则v0=4
v1=-8+3=-5
v2=10+2=12
v3=-24-1=-25
v4=50-1=49
v5=-58-$\frac{1}{2}$=-$\frac{197}{2}$.
故选A.

点评 本题考查的知识点是秦九韶算法,其中将多项式转化为((((4x+3)x+2)x-1)x-1)x-$\frac{1}{2}$的形式,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.甲、乙两盒中各装有大小相同的小球9个,其中甲盒中红色、黑色、白色小球的个数分别为2,3,4;乙盒中红色、黑色、白色小球的个数均为3.学生A从甲盒中取球,学习B从乙盒中取球.
(Ⅰ)若A,B各取一球,求两人所取的球颜色不同的概率;
(Ⅱ)若每人依次各取2球,称同一人手中两球盐酸相同的取法为成功取法,记成功取法次数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数y=f(x)的定义在实数集R上的奇函数,且当x∈(-∞,0)时,xf'(x)<f(-x)(其中f'(x)是f(x)的导函数),若a=$\sqrt{3}$f($\sqrt{3})$,b=(lg3)f(lg3),c=$({log_3}\frac{1}{3})f({log_3}\frac{1}{3})$,则(  )
A.c>a>bB.c>b>aC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数t=f(x)的值域为(0,8],则y=t2-10t-4的值域为(  )
A.[-20,-4)B.[-20,-4]C.[-29,-20]D.[-29,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列函数的导数.
(1)y=(x+1)(x+2)(x+3)
(2)y=2x•tanx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一般来说,一个人脚掌越长,他的身高就越高.现对10名成年人的脚掌x与身高y进行测量,得到数据(单位:cm)作为一个样本如下表示:
脚掌长(  )20212223242526272829
身高(  )141146154160169176181188197203
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,作出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程$\widehaty=\widehatbx+\widehata$;
(2)若某人的脚掌长为26.5cm,试估计此人的身高;
(3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.
附:线性回归方程$\widehaty=\widehatbx+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{{{\sum_{i=1}^n{({{x_i}-\overline x})}}^2}}}$,$\widehata=\overline y-\widehatb\overline x$,其中$\overline x$,$\overline y$为样本平均值.
参考数据:$\sum_{i=1}^{10}{({x_i}-\bar x)({y_i}-\bar y)}=577.5$,$\sum_{i=1}^{10}{{{({x_i}-\bar x)}^2}=82.5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.正数a,b满足$\frac{1}{a}+\frac{1}{b}=1$,则$\frac{1}{a-1}+\frac{4}{b-1}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是定义在[a-1,2a]上的偶函数,则a=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将函数f(x)=3sin(2x+φ),φ∈(0,π)的图象沿x轴向右平移$\frac{π}{6}$个单位长度,得到函数g(x)的图象,若函数g(x)满足g(|x|)=g(x),则φ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案