精英家教网 > 高中数学 > 题目详情
如图2-6-22,已知PM是⊙O的切线,M为切点,PAB和PCD均是⊙O割线,且AB·PD=BC·AD.

求证:PM2-PA2=AC·AD.

2-6-22

证明:∵=,

∴∠ADC=∠ABC.

∵AB·PD=BC·AD,∴.

∴△ABC∽△ADP.∴∠ACB=∠APD.

又∵=,∴∠ACB=∠ADB.

∴∠APC=∠ADB.

又∵四边形ABDC内接于圆,

∴∠ACP=∠ABD.

∴△APC∽△ADB.

.

∴AP·AB=AC·AD.

由切割线定理,得PM2=PA·PB.

∴PM2-PA2=PA·PB-PA2

=PA(PB-PA)=PA·AB=AC·AD.

∴PM2-PA2=AC·AD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|x-5|+|x+3|≥10的解集是
(-∞,-4]∪[6,+∞)
(-∞,-4]∪[6,+∞)

B.(坐标系与参数方程选做题)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是
(1,
2
(1,
2

C.(几何证明选做题)如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=2
2
,BE=1,BF=2,若CE与圆相切,则线段CE的长为
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某城市设立以城中心O为圆心、r公里为半径的圆形保护区,从保护区边缘起,在城中心O正东方向上有一条高速公路PB、西南方向上有一条一级公路QC,现要在保护区边缘PQ弧上选择一点A作为出口,建一条连接两条公路且与圆O相切的直道BC.已知通往一级公路的道路AC每公里造价为a万元,通往高速公路的道路AB每公里造价是m2a万元,其中a,r,m为常数,设∠POA=θ,总造价为y万元.
(1)把y表示成θ的函数y=f(θ),并求出定义域;
(2)当m=
6
+
2
2
时,如何确定A点的位置才能使得总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱(侧棱不垂直于底面)ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,BC=2,AC=2
3
,AB=2
2
AA1=A1C=
6

(Ⅰ) 设AC的中点为D,证明A1D⊥底面ABC;
(Ⅱ) 求异面直线A1C与AB成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某篮球运动员参加了10场比赛,他每专场比赛得分的茎叶图如图所示,已知他得分的中位数为22分,若要使他得分的方差最小,则a=
2
2
,b=
2
2
 
1 2  3  3  7
2 a  b  5  6  8
3 0  

查看答案和解析>>

同步练习册答案