精英家教网 > 高中数学 > 题目详情

若函数满足,并且当时,,则当时, = _________________________ .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对定义在上,并且同时满足以下两个条件的函数称为函数。

① 对任意的,总有

② 当时,总有成立。

已知函数是定义在上的函数。

(1)试问函数是否为函数?并说明理由;

(2)若函数函数,求实数组成的集合;

(3)在(2)的条件下,讨论方程解的个数情况。

查看答案和解析>>

科目:高中数学 来源:2015届浙江省高一第一次统练数学试卷(解析版) 题型:填空题

若函数满足,并且当时,,则当时,=                      

 

查看答案和解析>>

科目:高中数学 来源:2011年山东省高一入学检测数学试卷 题型:填空题

若函数满足,并且当时,,求当时,=                     .

 

查看答案和解析>>

科目:高中数学 来源:2014届安徽省高一下学期期中考试数学试卷(解析版) 题型:解答题

函数在同一个周期内,当 时,取最大值1,当时,取最小值

(1)求函数的解析式

(2)函数的图象经过怎样的变换可得到的图象?

(3)若函数满足方程求在内的所有实数根之和.

【解析】第一问中利用

又因

       函数

第二问中,利用的图象向右平移个单位得的图象

再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,

第三问中,利用三角函数的对称性,的周期为

内恰有3个周期,

并且方程内有6个实根且

同理,可得结论。

解:(1)

又因

       函数

(2)的图象向右平移个单位得的图象

再由图象上所有点的横坐标变为原来的.纵坐标不变,得到的图象,

(3)的周期为

内恰有3个周期,

并且方程内有6个实根且

同理,

故所有实数之和为

 

查看答案和解析>>

同步练习册答案