精英家教网 > 高中数学 > 题目详情

已知锐角三角形ABC中,向量,且

(1)求角B的大小;

(2)当函数y=2sin2A+cos()取最大值时,判断三角形ABC的形状。

 

【答案】

(1);(2)三角形是正三角形.

【解析】

试题分析:(1)由可得:,整理化简得:

,又为锐角三角形,;(2)由(1),所以,这样,可将中的角C换掉,只留角A,将其看作关于角A的函数,利用三角函数即可求得其最大值时角A值,这样根据三个角的大小可确定三角形的形状.

试题解析:           2分

            4分

锐角三角形中,          6分

(2)由(1)知,所以

=

=

    9分

时,即有最大值.

此时三角形是正三角形.      12分

考点:1、向量与三角函数;2、三角函数的最值及三角形的形状.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知锐角三角形ABC中,sin(A+B)=
3
5
,sin(A-B)=
1
5

(Ⅰ)求证:tanA=2tanB;
(Ⅱ)设AB=3,求AB边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角三角形△ABC内角A、B、C对应边分别为a,b,c.tanA=
3
bc
b2+c2-a2

(Ⅰ)求A的大小;
(Ⅱ)求cosB+cosC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角三角形ABC中,定义向量
m
=(sinB,-
3
),
n
=(cos2B,4cos2
B
2
-2),且
m
n

(1)求函数f(x)=sin2xcosB-cos2xsinB的单调减区间;
(2)若b=1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角三角形ABC中内角A、B、C的对边分别为a,b,c,a2+b2=6abcosC,且sin2C=2sinAsinB.
(1)求角C的值;
(2)设函数f(x)=sin(ωx-
π
6
)-cosω
x
 
 
(ω>0)
,且f(x)图象上相邻两最高点间的距离为π,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•卢湾区二模)(文)已知锐角三角形ABC的三边为连续整数,且角A、B满足A=2B.
(1)当
π
5
<B<
π
4
时,求△ABC的三边长及角B(用反三角函数值表示);
(2)求△ABC的面积S.

查看答案和解析>>

同步练习册答案